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Abstract—We present a framework for the analysis of process variation
across semiconductor wafers. The framework is capable of quantifying
the primary parameters affected by process variation, e.g., the effective
channel length, which is in contrast with the former techniques wherein
only secondary parameters were considered, e.g., the leakage current.
Instead of taking direct measurements of the quantity of interest,
we employ Bayesian inference to draw conclusions based on indirect
observations, e.g., on temperature. The proposed approach has low costs
since no deployment of expensive test structures might be needed or
only a small subset of the test equipments already deployed for other
purposes might need to be activated. The experimental results present
an assessment of our framework for a wide range of configurations.

I. INTRODUCTION AND PRIOR WORK

Process variation constitutes one of the major concerns of elec-

tronic system designs [1, 2]. A crucial implication of process variation

is that it renders the key parameters of a technological process, e.g.,

the effective channel length and gate oxide thickness, as uncertain

quantities. Therefore, the same workload applied to two “identical”

dies can lead to two different power and, thus, temperature profiles

since the dissipation of power and heat essentially depends on

the aforementioned quantities. Consequently, process variation leads

to performance degradation in the best case and to severe faults

or burnt silicon in the worst scenario. Under these circumstances,

uncertainty quantification has evolved into an indispensable asset

of the fabrication workflows in order to provide guaranties on the

efficiency and robustness of products.

An important target of uncertainty quantification is the character-

ization of the on-wafer distribution of a quantity of interest, dete-

riorated by process variation, based on measurements. The problem

belongs to the class of inverse problems since the analyzed parameter

can be seen as an input to the system and the measured data as

the corresponding output. Such an inverse problem is addressed in

this work: our goal is to characterize arbitrary process parameters

with high accuracy and at low costs. The goal is accomplished by

tracking supplementary quantities, which are more convenient and

less expensive to be measured, and employing Bayesian statistics [3]

to infer the needed parameters from the observed data.

Bayesian inference is utilized in [4] to identify the optimal set

of locations on a wafer, in which the parameter under consideration

should be measured in order to characterize it with the maximal

accuracy. The expectation-maximization algorithm is considered in

[5] in order to estimate missing test measurements. In [6], the

authors consider an inverse problem focused on the inference of the

power dissipation based on transient temperature maps using Markov

random fields. Another temperature-based characterization of power

is developed in [7] wherein a genetic algorithm is employed for

the reconstruction of the power model. It should be noted that the

procedures in [4, 5] operate on direct measurements, meaning that the

output is the same quantity as the one being measured. In particular,

[4, 5] rely heavily on the availability of adequate test structures on

the dies and are practical only for the secondary quantities affected

by process variation, such as delays and currents, but not for the

primary ones, such as various geometrical properties. Hence, [4, 5]

often lead to excessive costs and have a limited range of application.

The approaches [6, 7], on the other hand, concentrating on the power

dissipation of a single die, are not concerned with process variation.

Our work makes the following main contribution. We propose a

novel approach to the quantification of process variation based on

indirect, incomplete, and noisy measurements. Moreover, we develop

and implement a solid framework around the proposed idea and

perform a thorough study of various aspects of our technique.

II. MOTIVATIONAL EXAMPLE

Let us consider an important application of the proposed technique:

the characterization of the distribution, across a silicon wafer, of the

effective channel length, denoted by u. The effective channel length

has one of the strongest effects on the subthreshold leakage current

and, consequently, on power and temperature [8]; at the same time,

u is well known to be severely deteriorated by process variation [1,

2]. Assume the technological process imposes a lower bound u∗ on

u.1 This bound separates defective dies (u < u∗) from those that

are acceptable (u ≥ u∗). In order to reduce costs, the manufacturer

is interested in detecting the faulty dies and taking them out of the

production process at early stages. Then the possible actions that they

might take with respect to a single die on the wafer are: (a) keep the

die if it conforms to the specification; (b) recycle the die otherwise.

Let the distribution of u across the wafer be the one depicted on the

left side of Fig. 1. The gradient from navy to dark red represents the

transition of u from low to high values; hence, the navy regions have

a high level of the power and heat dissipation.2

In order to quantify the uncertainty due to the variability of

the effective channel length u, one can find the above-mentioned

distribution by removing the top layer of (thus, destroying) the dies

and measuring u directly. Alternatively, despite the fact that the

knowledge of u is more preferable, one can step back and decide

to characterize process variation using some other parameter that

can be measured without the need of damaging the dies, e.g., the

Figure 1. The true (on the left) and inferred (on the right) distributions of the
effective channel length across the wafer. The color scheme shows the offset
of u from the nominal value where σ stands for the standard deviation of u.

1For simplicity, a possible upper bound on the effective channel length is
ignored in the motivational example.

2The experimental setup will be described in detail in Sec. VI.
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leakage current. It should be noted that, in this second case, the

chosen surrogate is the final product, and u is left unknown. In either

way, adequate test structures have to be present on the dies in order to

take the corresponding measurements in sufficiently many points and

at the desired level of granularity. Such a sophisticated test structure

might not always be readily available, and its deployment might

significantly increase production costs. Moreover, the first approach

implies that the measured dies have to be recycled afterwards, and the

second implies that the further design decisions will be based on a

surrogate quantity instead of the primary source of uncertainty, which

can compromise the reliability of the decisions. The latter concern is

particularly urgent in the situations wherein the production process

is not yet completely stable and, hence, the design decisions based

on the primary subjects of process variation are desirable.

Our technique works differently. In order to characterize the effec-

tive channel length u, we monitor an auxiliary quantity q that depends

on u and is more advantageous from the measurement perspective.

The distribution of u across the whole wafer is then obtained via

Bayesian inference [3] applied to the collected measurements of q.

These measurements are taken only for a small number of locations

on the wafer and can potentially be corrupted by the noise due to the

imperfection of the measurement equipments.

Let us consider one particular helper q, which can be used to study

the effective channel length u; specifically, let q be temperature (we

elaborate further on this choice in Sec. VI). We can then apply a fixed

workload (e.g., run the same application under the same conditions)

to a few dies on the wafer and measure the corresponding temperature

profiles. Since temperature does not require extra equipments to be

deployed on the wafer and can be tracked using infrared cameras [7]

or built-in facilities of the dies, our approach can reduce the costs

associated with the analysis of process variation. The results of our

framework applied to a set of noisy temperature profiles measured

for only 7% of the dies on the wafer are shown on the right side of

Fig. 1, and the locations of the selected dies are depicted in Fig. 2.

It can be seen that the two maps in Fig. 1 closely match each other

implying that our approach is able to reconstruct the distribution of

the effective channel length with a high level of accuracy.

Another feature of the proposed framework is that probabilities

of various events, e.g., P(u ≥ u∗), can readily be estimated. This

is important since, in reality, the true values are unknown for us

(otherwise, we would not need to quantify them), and, therefore, we

can rely on our decisions only up to a certain probability. We can

then reformulate the decision rule defined earlier as follows: (a) keep

the die if P(u ≥ u∗) is larger than a certain threshold; (b) recycle

the die otherwise. An illustration of this rule is given in Fig. 3 where

the lower bound u∗ is set to two standard deviations below the mean

value of the effective channel length; the probability threshold of the

action (a) is set to 0.9; the crosses mark both the true and inferred

defective dies (they coincide); and the gradient from light gray to

red corresponds to the inferred probability of a die to be defective.

It can be seen that the inference accurately detects faulty regions.

In addition, we can introduce a trade-off action: (c) expose the

die to a thorough inspection (e.g., via a test structure) if P(u ≥ u∗)
is smaller than the threshold of (a) and is larger than some other

threshold, e.g., 0.1 < P(u ≥ u∗) < 0.9. In this case, we can

reduce costs by examining only those dies for which there is neither

sufficiently strong evidence of their satisfactory nor unsatisfactory

condition. Furthermore, one can take into consideration a so-called

utility function, which, for each combination of an outcome of u and

a taken action, returns the gain that the decision maker obtains. For

example, such a function can favor a rare omission of malfunctioning

dies to a frequent inspection of correct dies as the latter might involve

much more costs. The optimal decision is given by the action that

maximizes the expected utility with respect to both the observed

Figure 2. Measurements. Figure 3. Probability of defect.

data and prior knowledge on u. Thus, all possible u weighted by

their probabilities will be taken into account in the final decision,

incorporating also the preferences of the user via the utility function.

Finally, we would like to emphasize that temperature is just one

option. In certain situations, it might be preferable to perform the

above inference based on measurements of some other auxiliary

quantity q provided that it depends on the one that we wish to

characterize, i.e., on u. For example, q can be the leakage current,

which can be readily measured if adequate test structures have already

been deployed on the wafer for other purposes.

III. PROBLEM FORMULATION

Consider a generic electronic system, which is fabricated on a

silicon wafer hosting nd dies. The system depends on a process

parameter u, which we are interested in studying and shall refer

to as the quantity of interest (QOI). Due to the presence of process

variation, the value of u deviates from the nominal one, and this

deviation can be different at different locations on the wafer. The

QOI is assumed to be expensive/impractical for direct measurements.

The goal of this work is to develop a statistical framework targeted

at the identification of the on-wafer distribution of u with the

following properties: (a) low measurement costs; (b) high compu-

tational speed; (c) robustness to the measurement noise; (d) ability

to accommodate prior knowledge on u; and (e) ability to assess the

trustworthiness of the collected data and corresponding predictions.

In order to achieve the established goal, we propose the use of

indirect measurements. Specifically, instead of u, we measure an

auxiliary parameter q, which we shall refer to as the quantity of

measurement (QOM). The observations of q are then processed via

Bayesian inference in order to derive the distribution of the QOI, u.

The QOM is chosen such that: (a) q is convenient and cheap to be

tracked; (b) q depends on u, which is signified by q = f (u); and

(c) there is a way to compute q for a given u. The last means that f
should be known; however, it does not have to be explicitly given:

our framework treats f as a “black box.” For example, f can be a

piece of code or an output of an adequate simulator.

As the first step, the user of the proposed framework is supposed

to harvest a set of observations of q at several locations on the

wafer (recall Sec. II). Without loss of generality, we shall adhere

to the following convention. One die corresponds to one potential

measurement site, and n′
d � nd denotes the number of those sites

that have been selected for measurements. Each site comprises np

measurement points, and each point contains nt data instances. For

example, in Sec. II, each observation was an np×nt matrix capturing

temperature of np processing elements for nt moments of time.

Denote by Q = {qmsr
i }n

′
d

i=1 the collected data set where qmsr
i ∈ R

np×nt

stands for one observation (one site) of the QOM. It is implied that

the placement of each selected site is recorded along with Q.

Note that, if f is the identity function, i.e., q ≡ u, the proposed

technique will primarily focus on the reconstruction of any missing
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Figure 4. The proposed framework.

observations (defined in Sec. V-B2) in Q. From this standpoint, our

approach is a generalization of those developed in [4, 5].

For convenience, we denote by S all the information relevant to

the production and measurement processes including: (a) the layout

of the wafer and (b) the floorplan of a die on the wafer.

IV. PRELIMINARIES

In order to give a clear presentation of the proposed technique,

we first overview the basics of Bayesian inference [3]. Let θ be a

set of unknown parameters (in our case, related to, e.g., the effective

channel length), which we would like to characterize. Our arsenal to

solve the problem includes: (a) a set of observations Q (in our case,

e.g., temperature or current); (b) a data model connecting θ with Q;

and (c) prior beliefs on θ. A natural solution is Bayes’ rule:

p(θ|Q) ∝ p(Q|θ) p(θ) (1)

where p(·) denotes a probability density function. p(Q|θ) is known

as the likelihood function, which accommodates the data model and

yields the probability of observing the data Q given the parameters

θ. p(θ) is called the prior of θ, which represents our knowledge

on θ prior to any observations. p(θ|Q) reads as the posterior of θ
given Q. Such a posterior is an exhaustive solution to our problem:

having constructed p(θ|Q), all the needed characteristics of θ can

be trivially estimated by drawing samples from this posterior.

Unfortunately, the posterior distribution often does not belong to

any of the common families of probability distributions, which is

primarily due to the data model involved in the likelihood function,

and, therefore, the sampling procedure is not straightforward. To

tackle the difficulty, one usually relies on such techniques as Markov

Chain Monte Carlo (MCMC) sampling [3]. In this case, an ergodic

Markov chain with the stationary distribution equal to the target pos-

terior distribution is constructed and then utilized for the probability

space exploration. A popular instantiation of MCMC sampling is

the Metropolis-Hastings (MH) algorithm wherein such a Markov

chain is attained via sampling from an auxiliary, computationally

convenient distribution known as the proposal distribution. We shall

further elaborate on this algorithm in Sec. V-B–Sec. V-D.

V. PROPOSED FRAMEWORK

In this section, we present our statistical framework for the char-

acterization of process variation. The technique is divided into four

major stages depicted in Fig. 4. Stage 1 is the data-harvesting stage

wherein the user collects a set of observations of the QOM, q, forming

the input set Q. At Stage 2, we undertake an optimization procedure,

which assists MCMC sampling at Stage 3 in the construction of

an efficient proposal distribution. Stage 3 produces a collection of

Figure 5. The statistical model.

samples of the QOI, u, such as the effective channel length, which

is then processed at Stage 4 in order to estimate all the needed

characteristics with respect to this QOI, e.g., the probability of the

effective channel length to be smaller than a certain threshold as

motivated in Sec. II. As it can be seen in Fig. 4, Stage 2 and Stage 3

actively communicate with the two models on the right, called the

data and statistical models, which we discuss next.

A. Data Model

The data model is essentially a directed relation between the

QOI, u, and the QOM, q, which we denote by the “black-box”

transformation q = f (u). f depends on the choice of q and is

specified by the user according to the guidelines in Sec. III.

The data model is utilized to predict the values of the QOM at the

same sites, at the same inner points, and with the same amount as

the ones in Q. The resulting data are then stacked into one vector

with n′
dnpnt elements (see Sec. III), which is denoted by q. We also

let qmsr ∈ R
n′

dnpnt be a stacked version of the data in Q such that the

respective elements of q and qmsr correspond to the same locations.

In order to acquire a better understanding of the data model, let

us return to the setup considered in Sec. II. In this case, u stands

for the effective channel length, and q stands for the temperature

profile corresponding to a fixed workload. The data model q = f (u)
can be roughly divided into two transitions: (a) the effective channel

length u to the leakage power pleak and (b) the leakage power pleak

to the corresponding temperature profile q. The first transition is

accomplished using one of the leakage models broadly available in

the contemporary literature; see, e.g., [1, 2, 8]. In particular, a leakage

model can be constructed via a fitting procedure applied to a data

set of SPICE simulations of reference electrical circuits. The only

requirement to such a model is that it should be parametrized by

u. In addition, it can also be parametrized by temperature in order

to account for the well-known interdependency between leakage and

temperature. The second transition is undertaken by combining the

leakage power pleak with the dynamic power pdyn that corresponds

to the considered workload. The obtained total power along with the

temperature-related information contained in S (mainly, the floorplan

and thermal parameters of the die) are fed to a thermal simulator (see

Sec. VI) in order to acquire the corresponding temperature q.

B. Statistical Model

Once the wafer has been fabricated, the values of u are fixed for

all locations on the wafer; however, they remain unknown for us. In

order to infer them, we employ the procedure, called the statistical

model, developed in the current subsection and displayed in Fig. 5.

The development consists of the five components described below.
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1) Model of the QOI: The first step is to assign an adequate

model to the unknown u. We model u as a Gaussian process [9]

since: (a) it is flexible in capturing the correlation patterns induced

by the manufacturing process; (b) it is computationally efficient; and

(c) Gaussian distributions are often natural and accurate models for

uncertainties due to process variation [2, 5, 8]. Thus, we have

u|θu ∼ GP (μ, k) (2)

where μ(r) and k(r, r′) are the mean and covariance functions of

u, respectively, and r, r′ ∈ R
2 denote coordinates on the wafer.

Hereafter, the vertical bar, pronounced as “given,” is used to mark

the parameters that the probability distribution on the right-hand side

depends on. In this case, such parameters are θu, which we shall

identify later on. Prior to taking any measurements, u is assumed

to be spatially unbiased; therefore, we let μ be a single location-

independent parameter μu, i.e., μ(r) = μu, ∀r ∈ R
2. The covariance

function k is chosen to be the following composition:

k(r, r′) = σ2
u

(
η kSE(r, r

′) + (1− η)kOU(r, r
′)
)

(3)

where

kSE(r, r
′) = exp

(
−‖r − r

′‖2
�2SE

)
and

kOU(r, r
′) = exp

(
−| ‖r‖ − ‖r

′‖ |
�OU

)

are the squared exponential and Ornstein-Uhlenbeck correlation func-

tions [9], respectively; σ2
u represents the variance of u; η ∈ [0, 1] is

a weighting coefficient; �SE and �OU > 0 are so-called length-scale

parameters; and ‖ · ‖ stands for the Euclidean distance. The choice

of the covariance function k is guided by the observations of the

correlation structures induced by the fabrication process [1, 10]: kSE

imposes similarities between the points on the wafer that are close to

each other, and kOU imposes similarities between the points that are

at the same distance from the center of the wafer. �SE and �OU control

the extend of these similarities, i.e., the range wherein the influence of

one point on another is significant. Although all the above parameters

of the model of u can be inferred from the data, for simplicity, we

shall focus on μu and σ2
u. The rest of the parameters, namely, η, �SE,

and �OU, are assumed to be determined prior to our analysis based on

the knowledge of the correlation patterns typical for the production

process utilized (see [11] and references therein).

We have established a model for u given as a stochastic process.

Now the model requires one additional treatment in order to make it

computationally tractable, which we shall discuss next.

2) Model order reduction: The model of the QOI is an infinite-

dimensional object as it characterizes a continuum of locations. For

practical computations, however, it should be reduced to a finite-

dimensional one. First, u is discretized with respect to the union of

two sets of points: the first one is composed of the n′
dnp points where

the observations in Q were made (n′
d selected sites with np inner

locations each), and the other of the points where the user wishes to

characterize u. For simplicity, we assume that the user is interested in

all the sites, which is ndnp points in total. Thus, we obtain an ndnp-

dimensional representation of u denoted by u ∈ R
ndnp . Second,

the dimensionality is reduced even further by applying the well-

known principal component analysis to the covariance matrix of u
computed via Eq. (3). More precisely, we factorize this matrix using

the eigenvalue decomposition [12] and discard those eigenvalues

(and their eigenvectors) whose contribution to the total sum of the

eigenvalues is below a certain threshold. The result is

u = μue+ σuLz (4)

where e = (ei = 1) ∈ R
ndnp , L ∈ R

ndnp×nv , and z = (zi) ∈ R
nv

obey the standard Gaussian distribution. nv is the final dimensionality

of the model of u; typically, nv � ndnp. Consequently, the QOI is

now ready for practical computations. In what follows, the parameters

of Eq. (2) are defined by θu = {z, μu, σ
2
u} (see Fig. 5).

3) Likelihood function: In a Bayesian context, the observed infor-

mation is taken into account via a likelihood function (see Sec. IV).

In our case, the observed information is the measurements Q stacked

into qmsr as described in Sec. V-A. Since the measurement process is

not perfect, we should also take into consideration the measurement

noise. To this end, for a given u, the observed qmsr is assumed to

deviate from the data model prediction q as follows:

qmsr = q+ ε (5)

where ε is an n′
dnpnt-dimensional vector of noise, which is typically

assumed to be a white Gaussian noise [9, 11]. Without loss of

generality, the noise is assumed to be independent of u and to have the

same magnitude for all measurements (characterized by the utilized

instruments). Hence, the model of the noise is

ε|σ2
ε ∼ N

(
0, σ2

ε I
)

(6)

where σ2
ε is the variance of the noise, 0 is a vector of zeros, and I

is the identity matrix. Let us denote the parameters of the inference

by θ = θu ∪ {σ2
ε} = {z, μu, σ

2
u, σ

2
ε} (observe this union in Fig. 5).

Finally, combining Eq. (5) and Eq. (6), we obtain

qmsr|θ ∼ N (
q, σ2

ε I
)
. (7)

The probability density function of this distribution is the likelihood

function p(Q|θ) of our statistical model, which is the first of the two

components needed for the posterior given in Eq. (1).

4) Priors of the parameters: The second component of the pos-

terior in Eq. (1) is the prior p(θ), which we now need to decide on.

In this paper, we put the following priors on θ:

z ∼ N (0, I) , (8)

μu ∼ N
(
μ0, σ

2
0

)
, (9)

σ2
u ∼ Scale-inv-χ2 (νu, τ2u) , and (10)

σ2
ε ∼ Scale-inv-χ2 (νε, τ2ε ) . (11)

The prior for z is due to the properties of the decomposition in

Eq. (4). The next three priors, i.e., a Gaussian and two scaled inverse

chi-squared distributions, are a common choice for a Gaussian model

with the mean and variance being unknown. The parameters μ0,

τ2u , and τ2ε represent the presumable values of μu, σ2
u, and σ2

ε ,

respectively, and are set by the user based on the prior knowledge of

the technological process and measurement instruments employed.

The parameters σ0, νu, and νε reflect the precision of this prior

information. When the prior knowledge is weak, non-informative

priors can be utilized [3]. Taking the product of the densities in

Eq. (8)–Eq. (11), we obtain the prior p(θ) completing Eq. (1).

5) Posterior: At this point, we have obtained the two pieces of

the posterior shown in Eq. (1): the likelihood function, which is the

density in Eq. (7), and the prior, which is the product of the four

densities in Eq. (8)–Eq. (11). Thus, the posterior is

p(θ|Q) ∝ p(qmsr|z, μu, σ
2
u, σ

2
ε ) p(z) p(μu) p(σ

2
u) p(σ

2
ε ). (12)

Provided that we have a way of drawing samples from Eq. (12),

the QOI can be readily analyzed as we shall see in Sec. V-E. The

problem, however, is that the direct sampling of the posterior is not

possible due to the data model involved in the likelihood function via

q (see Eq. (7) and Sec. V-A). In order to circumvent this problem,

we utilize the Metropolis-Hastings (MH) algorithm [3] mentioned

in Sec. IV. The algorithm operates on an auxiliary distribution

called the proposal distribution, which is chosen to be convenient

for sampling. Each sample, drawn from this proposal, is then used in

Eq. (12) to evaluate the posterior probability of this sample and decide

439

5B-4



whether it should be accepted or rejected.3 The acceptance/rejection

strategy of the MH algorithm pushes the produced chain of samples

towards regions of high posterior probability, which, after a sufficient

number of steps, depending on the starting point of the chain and

the efficiency of the moves, results in a good approximation of the

target posterior distribution in Eq. (12). The preliminary computations

needed for the proposal construction are discussed next, and the

subsequent sampling procedure in Sec. V-D.

C. Optimization of the Proposal Distribution

In this section, we describe the objective of Stage 2 in Fig. 4.

Although the requirements to the proposal distribution mentioned

earlier are rather weak, it is often difficult to pick an efficient

proposal, which would yield a good approximation with as few

evaluations of the posterior in Eq. (12) and, thus, of the data

model in Sec. V-A as possible. This choice is especially severe

for high-dimensional problems, and our problem, involving around

30 parameters as we shall see in Sec. VI, is one them. Therefore,

a careful construction of the proposal distribution is an essential

component of our framework.4 A common technique to construct

a high-quality proposal is to perform an optimization of the posterior

given by Eq. (12). More specifically, we seek for such a value θ̂
of θ that maximizes Eq. (12) and, hence, has the maximal posterior

probability. We also compute the negative of the Hessian matrix at

θ̂, which is called the observed information matrix and denoted by

J (see the output of Stage 2 in Fig. 4). Using θ̂ and J, we can now

construct such a proposal, which will allow the MH algorithm (a)

to start producing samples directly from the desired regions of high

probability and (b) to explore those regions more rapidly.

D. Sampling via the Metropolis-Hastings Algorithm

Let us turn to Stage 3 in Fig. 4. We have at our disposal θ̂ and J
from Stage 2 in order to construct an adequate proposal and utilize it

for sampling. A commonly used proposal is a multivariate Gaussian

distribution wherein the mean is the current location of the chain of

samples started at θ̂, and the covariance matrix is the inverse of J [3].

In order to speed up the sampling process, we would like to make

use of the potential of multicore parallelization. The above proposal,

however, is purely sequential as the mean for the next sample draw is

dependent on the previous sample. Therefore, we appeal to a variation

of the MH algorithm known as the independence sampler [3]. In this

case, a typical choice of the proposal is a multivariate t-distribution,

independent of the current position of the chain:

θ ∼ tν
(
θ̂, α2J−1

)
(13)

where θ̂ and J are as in Sec. V-C, ν is the number of degrees of

freedom, and α is a tuning constant controlling the standard deviation

of the proposal. Now the proposal samples and the time-consuming

evaluation of their posterior in Eq. (12) can be computed for all

samples in parallel. Then the precomputed samples can subsequently

be accepted or rejected as in the usual MH algorithm.

Having completed the sampling procedure, we obtain a collection

of samples of θ. The first portion of the drawn samples is typically

discarded before the final computations as being unrepresentative;

this portion is also known as the burn-in period. Each of the preserved

samples of θ, comprising z, μu, and σ2
u, is then used in Eq. (4) to

compute a sample of u, ui ∈ R
ndnp . Denote such a data set with

nmc samples of the QOI by U = {ui}nmc
i=1.

3A reject means that the sequence of samples advances using the last
accepted sample; therefore, the chain of samples is never interrupted.

4This has been also confirmed by our experiments. Without optimization,
even for small examples, no adequate results were obtained in an affordable
time. Therefore, all the experiments in Sec. VI include the optimization step.

E. Post-processing

At Stage 4 in Fig. 4, using the set of samples U , the user computes

the desired statistics of the QOI such as the most probable value of the

effective channel length at some location of interest, the probability

of a certain area on the wafer to be defective, etc. The computations

boil down to the estimation of expected values with respect to the

posterior distribution of θ, p(θ|Q). This estimation is done in the

standard sample-based fashion, that is, in order to compute some

arbitrary quantity dependent on u, one needs to evaluate this quantity

for each ui in U and then take the average.

The strength of the Bayesian approach to inference really starts to

shine when we are also interested in assessing the trustworthiness

of the measured data and, therefore, the reliability of the esti-

mates/decisions based on these data. Such an assessment can readily

be undertaken using our framework since the delivered posterior

distribution contains all the needed information about the QOI. This

is especially helpful in decision making as exemplified in Sec. II.

VI. EXPERIMENTAL RESULTS

In this section, we assess our framework using the inference of the

effective channel length u based on temperature q. This choice for

illustration is dictated by the fact that such a high-level parameter

as temperature constitutes a challenging task for the inference of

such a low-level parameter as the effective channel length, which

implies a strong assessment of the proposed technique. On the other

hand, the effective channel length is an important target per se as

it is strongly affected by process variation and considerably impacts

the power/heat dissipation [1, 2, 8]; in particular, it also influences

other process-related characteristics such as the threshold voltage.

The performance of our approach is expected to only increase when

the auxiliary parameter q resides “closer” to the target parameter u
with respect to the transformation q = f (u). For instance, such a

“closer” quantity q can be the leakage current, which, however, might

not always be the most preferable parameter to measure.

Now we shall describe the default configuration of our setup, which

will be later adjusted according to the purpose of each particular

experiment. We consider a 45-nanometer technological process. The

diameter of the wafer is 20 dies, and the total number of dies nd

is 316. The number of measured dies n′
d is 20, and these dies

are chosen by an algorithm, which pursues an even coverage of

the wafer. The number of processing elements in each die is four,

and they are the points of taking measurements, i.e., np = 4. The

floorplans of the multiprocessor platforms are constructed in such a

way that the processing elements form regular grids. The dynamic

power profiles involved in the experiments are based on simulations

of randomly generated task graphs via TGFF v3.5 [13]. The sampling

interval of these profiles is 1 ms. The leakage model, parametrized

by temperature and the effective channel length, is constructed by

fitting to SPICE simulations of reference electrical circuits composed

of BSIM4 v4.7 devices [14] configured according to the 45-nm PTM

HP model [15]. The temperature calculations are undertaken using

the approach described in [16], based on HotSpot v5.02 [17].5 The

input data set Q is obtained as follows: (a) draw a sample of u
from a Gaussian distribution with the mean value equal to 17.5 nm,

according to the considered technological process [15], and the

covariance function given by Eq. (3) wherein the standard deviation

is 2.25 nm; (b) perform one fine-grained temperature simulation per

each of the n′
d selected dies under the corresponding dynamic power

profile; (c) shrink the temperature profiles to keep only nt, which

is equal to 20 by default, evenly spaced moments of time; and (d)

perturb the obtained data set using a white Gaussian noise with the

standard deviation of 1 K (Kelvin).

5The floorplans of the platforms, task graphs of the applications, thermal
configuration of HotSpot, etc. are available online at [18].
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Table I
MEASURED SITES n′

d

* 1 10 20 40 80 160

OT, m 0.41 2.49 3.34 4.59 7.33 10.29

ST, m 2.40 3.99 4.60 5.79 8.49 12.96
TT, m 2.81 6.47 7.94 10.38 15.81 23.25

PT, m 0.61 1.02 1.18 1.51 2.16 3.62
TT, m 1.02 3.50 4.52 6.10 9.49 13.91

E, % 30.49 4.40 3.42 1.09 0.85 0.67

Table II
MEASURED POINTS PER SITE np

2 4 8 16 32

2.67 3.34 5.20 7.37 13.85

3.71 4.60 6.03 8.92 14.77
6.38 7.94 11.23 16.29 28.62

0.98 1.18 1.58 2.51 5.30
3.65 4.52 6.78 9.88 19.15

4.71 3.42 3.68 2.73 1.94

Table III
DATA AMOUNT PER POINT nt

1 10 20 40 80 160

1.12 3.02 3.34 3.62 3.64 4.20

2.40 4.38 4.60 4.67 4.80 4.97
3.52 7.40 7.94 8.29 8.44 9.16

0.62 1.13 1.18 1.22 1.25 1.30
1.74 4.16 4.52 4.84 4.89 5.50

7.48 2.72 3.42 1.83 2.34 1.32

Table IV
NOISE DEVIATION σε

0 K 0.5 K 1 K 2 K

5.08 3.73 3.34 3.19

4.76 4.70 4.60 4.71
9.84 8.43 7.94 7.90

1.19 1.17 1.18 1.18
6.27 4.91 4.52 4.37

0.02 2.71 3.42 4.05

* OT — optimization time, ST — sequential sampling time, PT — parallel sampling time, TT — total time (optimization plus sampling), and E — NRMSE.

Let us turn to the statistical model in Sec. V-B and summarize

the intuition and our assignment for each parameter of this model.

In the covariance function given by Eq. (3), the weight parameter

η and the two length-scale parameters �SE and �OU should be set

according to the correlation patterns typical for the production process

at hand [1, 10]; we set η to 0.7 and �SE and �OU to half the radius

of the wafer. The threshold parameter of the model order reduction

procedure described in Sec. V-B2 and utilized in Eq. (4) should be set

high enough to preserve a sufficiently large portion of the variance of

the data and, thus, to keep the corresponding results accurate; we set it

to 0.99 preserving 99% of this variance. The resulting dimensionality

nv of z in Eq. (4) was found to be 27–28. The parameters μ0 and

τu of the priors in Eq. (9) and Eq. (10), respectively, are specific

to the considered technological process; we set μ0 to 17.5 nm and

τu to 2.25 nm. The parameters σ0 and νu in Eq. (9) and Eq. (10),

respectively, determine the precision of the information on μ0 and

τu and are set according to the beliefs of the user; we set σ0 to

0.45 nm and νu to 10. The latter can be thought of as the number

of imaginary observations that the choice of τu is based on. The

parameter τε in Eq. (11) represents the precision (deviation) of the

equipments utilized to collect the data set Q and can be found in

the technical specification of these equipments; we set τε to 1 K.

The parameter νε in Eq. (11) has the same interpretation as νu in

Eq. (10); we set it to 10 as well. In Eq. (13), ν and α are tuning

parameters, which can be configured based on experiments; we set ν
to eight and α to 0.5. The number of sample draws is another tuning

parameter, which we set to 104; the first half of these samples is

ascribed to the burn-in period leaving 5 · 103 effective samples nmc.

For the optimization in Sec. V-C, we use the Quasi-Newton algorithm

[12]. For parallel computations, we utilize four processors. All the

experiments are conducted on a GNU/Linux machine with Intel Core

i7 2.66 GHz and 8 GB of RAM.

To ensure that the experimental setup is adequate, we first perform

a detailed inspection of the results obtained for one particular example

with the default configuration. The true and inferred distributions of

the QOI are shown in Fig. 1 where the normalized root-mean-square

error (NRMSE) is below 2.8%, and the absolute error is bounded by

1.4 nm, which suggests that the framework produces a close match

to the true value of the QOI. We have also looked at the behavior

of the constructed Markov chains and the quality of the proposal

distribution; however, due to the shortage of space, these results are

not presented here. All the observations suggest that the optimization

and sampling procedures are properly configured.

Next we use the assessed configuration and alter only one param-

eter at a time: the number of measured sites/dies n′
d; the number of

processing elements/measured points np on a site; the amount of data

per measurement point nt; and the noise deviation σε.

A. Number of Measured Sites

Let us change the number of dies n′
d that have been measured.

The considered scenarios are 1, 10, 20, 40, 80, and 160 measured

dies, respectively. The results are reported in Tab. I. In this and the

following tables, we report the optimization (Stage 2 in Fig. 4) and

sampling (Stage 3 in Fig. 4) times separately (given in minutes).

In addition, the sampling time is given for two cases: sequential

and parallel computing, which is followed by the total time and

error (NRMSE). The computational time of the post-processing phase

(Stage 4 in Fig. 4) is not given as it is negligibly small. The

sequential sampling time is the most representative indicator of the

computational complexity scaling as the number of samples is always

fixed, and there is no parallelization; thus, we shall watch this value

in most of the discussions below (highlighted in bold).

We see in Tab. I that the more data the proposed framework needs

to process, the longer the execution times, which is reasonable. The

trend, however, is rather modest: with the doubling of n′
d, all the

computational times increase less than two times. The error firmly

decreases and drops below 4% with around 20 sites measured, which

is only 6.3% of the total number of dies on the wafer.

B. Number of Measured Points Per Site

Here we consider five platforms with the number of processing

elements/measurement points np on each die equal to 2, 4, 8, 16,

and 32, respectively. The results are summarized in Tab. II. All

the computational times grow with np. This behavior is expected

as the granularity of the utilized thermal model (see Sec. V-A and

[16]) is bound to the number of processing elements; therefore,

the temperature simulations become more intensive. Nevertheless,

even for large examples, the timing is readily acceptable, taking into

account the complexity of the inference procedure behind and the

yielded accuracy. An interesting observation can be made from the

NRMSE: the error tends to decrease as np grows. The explanation is

that, with each processing element, Q delivers more information to

the inference to work with since the temperature profiles are collected

for all the processing elements simultaneously.

C. Amount of Data Per Measured Point

In this subsection, we sweep the number of moments of time

nt captured by the measured temperature profiles. The scenarios

are 1, 10, 20, 40, 80, and 160 time moments, respectively. The

results are aggregated in Tab. III. As we see, the growth of the

computational time is relatively small. One might have expected

this growth due to nt to be the same as the one due to np since,

formally, the influence of np and nt on the dimensionality of Q is

identical (recall qmsr ∈ R
n′

dnpnt ). However, the meaning of the two

numbers, np and nt, is completely different, and, therefore, the way

they manifest themselves in the algorithm is also different. Therefore,

the corresponding amounts of extra data are being treated differently

leading to the discordant timing shown in Tab. II and Tab. III. The

NRMSE in Tab. III has a decreasing trend; however, this trend is less

steady than the ones discovered before. The finding can be explained

as follows. The distribution of the time moments in Q changes since

these moments are kept evenly spaced across the corresponding time

spans of the input power profiles. Some moments of time can be

more informative than the other. Hence, more or less representative
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samples can end up in Q helping or misleading the inference. We

can also conclude that a larger number of spatial measurements is

more advantageous than a larger number of temporal measurements.

D. Deviation of the Measurement Noise

Next we vary the standard deviation of the noise (in Kelvins),

affecting the data Q, within the set {0, 0.5, 1, 2} coherent with

the literature [7]. Note that the corresponding prior distribution in

Eq. (11) is kept unchanged. The results are given in Tab. IV. The

sampling time is approximately constant. However, we observe an

increase of the optimization time with the decrease of the noise level,

which can be ascribed to wider possibilities of perfection for the

optimization procedure. A more important observation, revealed by

this experiment, is that, in spite of the fact that the inference operates

on indirect and drastically incomplete data, a thoroughly calibrated

equipment can considerably improve the quality of predictions.

However, even with a high level of noise of two degrees—meaning

that measurements are dispersed over a wide band of 8 K with a large

probability of more than 0.95—the NRMSE is still only 4%.

E. Sequential vs. Parallel Sampling

Let us summarize the results of the sequential and parallel sam-

pling strategies. In the sequential MH algorithm, the optimization

time is typically smaller than the time needed for drawing posterior

samples. The situation changes when parallel computing is utilized.

With four parallel processors, the sampling time decreases 3.81 times

on average, which indicates good parallelization properties of the

chosen sampling strategy. The overall speedup ranges from 1.49 to

2.75 with the average value of 1.77 times, which can be pushed even

further employing more parallel processors.

VII. CONCLUSION

We proposed a framework for the analysis of process variation

across semiconductor wafers based on cost-efficient, indirect mea-

surements. The technique was exposed to an extensive study of

various aspects concerning its implementation. The obtained results

support the computational efficiency and accuracy of our approach.

We would like to note that, although the framework was demon-

strated on the effective channel length and temperature, it can be

readily utilized to analyze any other QOIs based on any other QOMs.
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