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Abstract—Electronic system designs that ignore process varia-
tion are unreliable and inefficient. In this work, we propose a
system-level framework for the analysis of temperature-induced
failures that takes into account the uncertainty due to process
variation. As an intermediate step, we also develop a probabilistic
technique for dynamic steady-state temperature analysis. Given
an electronic system under a certain workload, our framework de-
livers the corresponding survival function, founded on the basis of
well-established reliability models, with a closed-form stochastic
parameterization in terms of the quantities that are uncertain at
the design stage. The proposed solution is exemplified considering
systems with periodic workloads that suffer from the thermal-
cycling fatigue. The analysis of this fatigue is a challenging
problem as it requires the availability of detailed temperature
profiles, which are uncertain due to the variability of process
parameters. In order to demonstrate the computational efficiency
of our framework, we undertake a design-space exploration
procedure to minimize the expected energy consumption under
a set of timing, thermal, and reliability constraints.

Index Terms—Process variation, reliability analysis, reliability
optimization, temperature analysis, uncertainty quantification.

I. INTRODUCTION

P ROCESS VARIATION constitutes one of the major concerns
of electronic system designs [1]. A crucial implication

of process variation is that it renders the key parameters of a
technological process, e.g., the effective channel length, gate
oxide thickness, and threshold voltage, as random quantities
at the design stage. Therefore, the same workload applied to
two “identical” dies can lead to two different power and, thus,
temperature profiles since the dissipation of power and heat
essentially depends on the aforementioned stochastic parameters.
This concern is especially urgent due to the interdependence
between the leakage power and temperature [2]. Consequently,
process variation leads to performance degradation in the best
case and to severe faults or burnt silicon in the worst scenario.
Under these circumstances, uncertainty quantification [3] has
evolved into an indispensable asset of temperature-aware design
workflows in order to provide them with guaranties on the
efficiency and robustness of products.

Temperature analysis can be broadly classified into two
categories: transient and steady-state. The latter can be further
subdivided into static and dynamic. Transient temperature
analysis is concerned with studying the thermal behavior of a
system as a function of time. Intuitively speaking, the analysis
takes a power curve and delivers the corresponding temperature
curve. Static steady-state temperature analysis addresses the
hypothetical scenario in which the power dissipation is constant,
and one is interested in the temperature that the system will
attain when it reaches a static steady state. In this case, the
analysis takes a single value for power (or a power curve which
is immediately averaged out) and outputs the corresponding
single value for temperature. Dynamic steady-state (DSS)

temperature analysis is a combination of the previous two:
it is also targeted at a steady state of the system, but this
steady state, referred to as a dynamic steady state, is now a
temperature curve rather than a single value. The considered
scenario is that the system is exposed to a periodic workload
or to such a workload that can be approximated as periodic,
and one is interested in the repetitive evolution of temperature
over time when the thermal behavior of the system stabilizes
and starts exhibiting the same pattern over and over again.
Prominent examples here are various multimedia applications.
The input to the analysis is a power curve, and the output is the
corresponding periodic temperature curve. In the absence of
uncertainty, this type of analysis can be efficiently undertaken
using the technique developed in [4].

A typical design task, for which temperature analysis is of
central importance, is temperature-aware reliability analysis
and optimization. The crucial impact of temperature on the
lifetime of electronic circuits is well known [5]. Examples
of the commonly considered failure mechanisms include
electromigration, time-dependent dielectric breakdown, and
thermal cycling, which are directly driven by temperature.
Among all failure mechanisms, thermal cycling has arguably
the most prominent dependence on temperature: not only the
average and maximum temperature but also the amplitude and
frequency of temperature oscillations have a huge impact on the
lifetime of the circuit. In this context, the availability of detailed
temperature profiles is essential, which can be delivered by
means of either transient or DSS temperature analysis.

Due to the urgent concern originating from process variation,
deterministic temperature analysis and, thus, all procedures
based on it are no longer a viable option for the designer.
The presence of uncertainty has to be addressed in order to
pursue efficiency and fail-safeness. In this context, probabilistic
techniques are the way to go, which, however, implies a higher
level of complexity. This paper builds upon the state-of-the-art
techniques for deterministic DSS temperature analysis proposed
in [4] and probabilistic transient temperature analysis proposed
in [6] and presents a computationally efficient framework for
probabilistic DSS temperature analysis and the subsequent
reliability analysis and optimization of electronic systems.

The remainder of the paper is organized as follows. Sec. II
provides an overview of the prior work. In Sec. III, we summa-
rize the contribution of the present paper. The preliminaries are
given in Sec. IV. The objective of our study is formulated in
Sec. V. The proposed frameworks for uncertainty, temperature,
and reliability analyses are presented in Sec. VI, Sec. VII,
and Sec. VIII, respectively. An application of the proposed
techniques in the context of reliability optimization is given
in Sec. IX. In Sec. X, the experimental results are reported
and discussed. Sec. XI concludes the paper. The appendix
(Appendix A–E) contains a set of supplementary materials
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with discussions on certain aspects of our solutions.

II. PRIOR WORK

In this section, an overview of the literature related to our
work is given. First, we discuss those studies that focus on
probabilistic temperature analysis, and then we turn to those
that focus on temperature-aware reliability analysis.

The most straightforward approach to analyze a stochastic
system is Monte Carlo (MC) sampling [3]. The technique is
general and has had a tremendous impact since the middle of the
twentieth century when it was introduced. The success of MC
sampling is due to the ease of implementation, independence of
the stochastic dimensionality, and asymptotic behavior of the
quantities estimated using this approach. The crucial problem
with MC sampling, however, is the low rate of convergence:
in order to obtain an additional decimal point of accuracy, one
has to draw usually hundred times more samples. Each sample
implies a complete realization of the whole system, which
renders MC-based methods slow and often infeasible as the
needed number of simulations can be extremely large [7].

In order to overcome the limitations of deterministic
temperature analysis and, at the same time, to completely
eliminate or, at least, to mitigate the costs associated with
MC sampling, a number of alternative probabilistic techniques
have been introduced. The overwhelming majority of the
literature concerned with temperature relies on static steady-
state temperature analysis. Examples include the work in
[8], which employs stochastic collocation [3] as a means of
uncertainty quantification, and the work in [9], which makes
use of the linearity property of Gaussian distributions and time-
invariant systems. The omnipresent assumption about static
temperatures, however, can rarely be justified since power
profiles are not invariant in reality. Nevertheless, the other
two types of temperature analysis, i.e., transient and DSS, are
deprived of attention. Only recently a probabilistic framework
for the characterization of transient temperature profiles was
introduced in [6]; the framework is based on polynomial chaos
expansions [3]. Regarding the DSS case, to the best of our
knowledge, it has not been studied yet in the literature from
the stochastic perspective. However, as mentioned earlier, the
knowledge of DSS variations is of practical importance when
designing systems whose workloads tend to be periodic. In
particular, the DSS analysis allows the designer to address the
thermal-cycling fatigue, which we illustrate in this paper.

Let us now discuss temperature-aware reliability-driven
studies. Reliability analysis is probabilistic by nature. Certain
components of a reliability model, however, can be treated as
either stochastic or deterministic, depending on the phenomena
that the model is designed to account for. Temperature is
an example of such a component: it can be considered as
deterministic if the effect of process variation on temperature
is neglected and as stochastic otherwise. The former scenario
is the one that is typically addressed in the literature related
to reliability. For instance, the reliability modeling framework
proposed in [10] has a treatment of process variation, but
temperature is included in the model as a deterministic quantity.
Likewise, the aging-minimization procedure in [4] assumes
temperature to be unaffected by process variation. In [11], a
design methodology minimizing the energy consumption and

temperature-related wear-outs of multiprocessor systems is
introduced; yet neither energy nor temperature is aware of the
uncertainty due to process variation. A similar observation
can be made with respect to the work in [12] wherein a
reinforcement learning algorithm is used to improve the lifetime
of multiprocessor systems. An extensive and up-to-date survey
on reliability-aware system-level design techniques given in
[13] confirms the trend outlined above: the widespread device-
level models of failure mechanisms generally ignore the impact
of process variation on temperature. However, as motivated
in the introduction, deterministic temperature is a strong
assumption that can lead to substantial yield losses.

An example of a different kind is the work in [8]: it
provides a statistical simulator for reliability analysis under
process variations and does consider temperature as a stochastic
parameter. However, as discussed previously, this study is bound
to static steady-state temperatures, and the presented reliability
analysis is essentially an analysis of maximal temperatures
without any relation to the typical failure mechanisms [5].

To conclude, the designer’s toolbox in our field does not
yet include a tool for DSS temperature analysis under process
variation, which is of high importance for certain classes of
applications mentioned previously. Furthermore, the state-of-
the-art reliability models lack a flexible approach for taking the
effect of process variation on temperature into consideration.
This work eliminates the aforementioned concerns.

III. OUR CONTRIBUTIONS

Our work brings the following major contributions:
• Contribution 1. Based on the stochastic approach to

transient temperature analysis presented in [6], we extend
the deterministic DSS temperature analysis presented in
[4] to account for the uncertainty due to process variation.

• Contribution 2. We develop a framework for the reliabil-
ity analysis of electronic systems that enriches the state-
of-the-art reliability models by taking into consideration
the effect of process variation on temperature.

• Contribution 3. We construct a computationally efficient
design-space exploration procedure targeted at the min-
imization of the energy consumption, which is a priori
random, under probabilistic constraints on the thermal
behavior and lifetime of the system.

IV. PRELIMINARIES

Let (Ω,F ,P) be a complete probability space, where Ω
is a set of outcomes, F ⊆ 2Ω is a σ-algebra on Ω, and P :
F → [0, 1] is a probability measure [14]. A random variable
on (Ω,F ,P) is an F-measurable function ζ : Ω → R. A
random variable ζ is uniquely characterized by its (cumulative)
distribution function defined by

Fζ(x) := P({ω ∈ Ω : ζ(ω) ≤ x}).
The expectation and variance of ζ are given by

E [ζ] :=

∫
Ω

ζ(ω) dP(ω) =

∫
R
x dFζ(x) and

Var [ζ] := E
[
(ζ − E [ζ])2

]
,

respectively. A random vector ζ = (ζi) and matrix Z = (ζij)
are a vector and matrix whose elements are random variables.
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Denote by L2(Ω,F ,P) the Hilbert space of square-integrable
random variables [15] defined on (Ω,F ,P) with the inner
product and norm defined, respectively, by

〈ζ1, ζ2〉 := E [ζ1ζ2] and ‖ζ‖ := 〈ζ, ζ〉1/2.
In what follows, all the random variables will tacitly have
(Ω,F ,P) as the underlying probability space.

V. PROBLEM FORMULATION

Consider a heterogeneous electronic system that consists
of np processing elements and is equipped with a thermal
package. The processing elements are the active components
of the system that are identified at the system level with a
desired level of granularity (e.g., SoCs, CPUs, and ALUs);
the components can be subdivided whenever a finer level of
modeling is required for the problem at hand.

We shall denote by S an abstract set containing all informa-
tion about the system that is relevant to our analysis, and we
shall refer to it as the system specification. The content of S
is problem specific, and it will be gradually detailed when it is
needed. For now, S is assumed to include: (a) the floorplan of
the chip; (b) the geometry of the thermal package; and (c) the
thermal parameters of the materials that the chip and package
are made of (e.g., silicon thermal conductivity).

A power profile is defined as a matrix P ∈ Rnp×nt containing
nt samples of the power dissipation of the processing elements.
The samples correspond to certain moments of time (tk)nt

k=1
that partition a time interval [0, tperiod] as

0 = t0 < t1 < . . . < tnt = tperiod.

Analogously, a temperature profile Q ∈ Rnp×nt is a matrix
containing samples of temperature. For clarity, power and
temperature profiles are assumed to have a one-to-one cor-
respondence and a constant sampling interval ∆t, that is,
tk − tk−1 = ∆t, for k = 1, 2, . . . , nt. In what follows, a
power profile that contains only the dynamic component of
the (total) power dissipation will be denoted by Pdyn.

The system depends on a set of parameters that are uncertain
at the design stage due to process variation. We model such
parameters using random variables and denote them by a
random vector u = (ui)

nu
i=1 : Ω→ Rnu . In this work, we are

only concerned with those parameters that manifest themselves
in the deviation of the actual power dissipation from nominal
values and, consequently, in the deviation of temperature from
the one corresponding to the nominal power consumption.

Given S, we pursue the following major objectives:
• Objective 1. Extend probabilistic temperature analysis to

include the DSS scenario under the uncertainty due to
process variation specified by u.

• Objective 2. Taking into consideration the effect of
process variation on temperature, find the survival function
of the system at hand under an arbitrary workload given
as a dynamic power profile Pdyn.

• Objective 3. Develop a computationally tractable design-
space exploration scheme exploiting the proposed frame-
work for temperature/reliability analysis.

In order to give a better intuition about our solutions, we
shall accompany the development of our framework with the
development of a concrete example/application, which will

eventually be utilized for the quantitative evaluation of the
framework given in Sec. X. To this end, we have decided to
focus on two process parameters, which are arguably the most
crucial ones, namely, the effective channel length u1 and the
gate-oxide thickness u2. In this example,

u = (u1, u2) : Ω→ R2, (1)

which is to be discussed in detail shortly. Regarding reliability,
we shall address the thermal-cycling fatigue as it is naturally
connected with DSS temperature analysis that we develop.

VI. UNCERTAINTY ANALYSIS

The key building block of our solutions developed in Sec. VII–
IX is the uncertainty quantification technique presented in this
section. The main task of this technique is the propagation of
uncertainty through the system, that is, from a set of inputs
to a set of outputs. Specifically, the inputs are the uncertain
parameters u, and the outputs are the quantities that we are
interested in studying. The latter can be, for instance, the energy
consumption, maximal temperature, or temperature profile of
the system over a certain period of time.

Due to the inherent complexity, uncertainty quantification
problems are typically viewed as approximation problems: one
first constructs a computationally efficient surrogate for the
stochastic model under consideration and then studies this
computationally efficient representation instead of the original
model. In order to construct such an approximation, we appeal
to spectral methods [3], [15], [16].

A. Uncertainty Model

Before we proceed to the construction of light surrogate
models, let us first refine our definition of u = (ui)

nu
i=1. Each

ui is a characteristic of a single transistor (consider, e.g., the
effective channel length), and, therefore, each device in the
electrical circuits at hand can potentially have a different
value of this parameter as, in general, the variability due to
process variation is not uniform. Consequently, each ui can
be viewed as a random process ui : Ω×D → R defined on
an appropriate spatial domain D ⊂ R2. Since this work is
system-level oriented, we model each processing element with
one variable for each such random process. More specifically,
we let uij = ui(·, rj) be the random variable representing the
ith uncertain parameter at the jth processing element where rj
stands for the spatial location of the center of the processing
element. Therefore, we redefine the parameterization u of the
problem at hand as

u = (ui)
nunp
i=1 (2)

such that there is a one-to-one correspondence between ui,
i = 1, 2, . . . , nunp, and uij , i = 1, 2, . . . , nu, j = 1, 2, . . . , np.
For instance, in our illustrative application with two process
parameters, the total number of stochastic dimensions is 2np.

Remark 1. Some authors prefer to split the variability of
a process parameter at a spatial location into several parts
such as wafer-to-wafer, die-to-die, and within-die; see, e.g., [9].
However, from the mathematical point of view, it is sufficient
to consider just one random variable per location which is
adequately correlated with the other locations of interest.
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A description of u is an input to our analysis given by the
user, and we consider it to be a part of the system specification
S. A proper (complete, unambiguous) way to describe a
set of random variables is to specify their joint probability
distribution function. In practice, however, such exhaustive
information is often unavailable, in particular, due to the high
dimensionality in the presence of prominent dependencies
inherent to the considered problem. A more realistic assumption
is the knowledge of the marginal distributions and correlation
matrix of u. Denote by {Fui}

nunp
i=1 and Ku ∈ Rnunp×nunp

the marginal distribution functions and correlation matrix of
the uncertain parameters u in (2), respectively. Note that the
number of distinct marginals is only nu since np components
of u correspond to the same uncertain parameter.

B. Parameter Preprocessing
Our foremost task now is to transform u into mutually inde-

pendent random variables as independence is essential for the
forthcoming mathematical treatment and practical computations.
To this end, an adequate probability transformation should be
undertaken depending on the available information; see [16]
for an overview. One transformation for which the assumed
knowledge about u is sufficient is the Nataf transformation
[17]. Denote this transformation by

u = T [ξ] , (3)

which relates nunp dependent random variables, i.e., u, with
nξ = nunp independent random variables

ξ = (ξi)
nξ
i=1. (4)

Regardless of the marginals, ξi ∼ N (0, 1), i = 1, 2, . . . , nξ,
that is, each ξi has the standard Gaussian distribution. Refer to
Appendix B for further details about the Nataf transformation.

As we shall discuss later on, the stochastic dimensionality nξ
has a considerable impact on the computational complexity of
our framework. Therefore, an important part of the preprocess-
ing stage is model order reduction. To this end, we preserve
only those stochastic dimensions whose contribution to the
total variance of u is the most significant, which is identified
by the eigenvalues of the correlation matrix Ku:

λ = (λi)
nunp
i=1 , ‖λ‖1 = 1, (5)

as it is further discussed in Appendix C. Without introducing
additional transformations, we let T in (3) be augmented with
such a reduction procedure and redefine ξ ∈ Rnξ as the reduced
independent random variables where nξ ≤ nunp. We would
like to note that this procedure is highly preferable as it helps
to keep nξ moderate, and it is especially advantages when
refining the granularity of the analysis (see Sec. V).

Let us turn to the illustrative application. Recall that we
exemplify our framework considering the effective channel
length and gate-oxide thickness with the notation given in (1).
Both parameters correspond to Euclidean distances; they take
values on bounded intervals of the positive part of the real line.
With this in mind, we model the two process parameters using
the four-parametric family of beta distributions:

ui ∼ Fui = Beta (ai, bi, ci, di)

where i = 1, 2, . . . , 2np, ai and bi control the shape of the
distributions, and [ci, di] correspond to their supports. Without

loss of generality, we let the two considered process parameters
be independent of each other, and the correlations among those
elements of u that correspond to the same process parameter
be given by the following correlation function:

k(ri, rj) = $ kSE(ri, rj) + (1−$)kOU(ri, rj) (6)

where ri ∈ R2 is the center of the ith processing element
relative to the center of the die. The correlation function is a
composition of two kernels:

kSE(ri, rj) = exp

(
−‖ri − rj‖2

`2SE

)
and

kOU(ri, rj) = exp

(
−| ‖ri‖ − ‖rj‖ |

`OU

)
,

which are known as the squared-exponential and Ornstein–
Uhlenbeck kernels, respectively. In the above formulae, $ ∈
[0, 1] is a weight coefficient balancing the kernels; `SE and
`OU > 0 are so-called length-scale parameters; and ‖ · ‖ stands
for the Euclidean norm in R2. The choice of these two kernels
is guided by the observations of the correlation patterns induced
by the fabrication process: kSE imposes similarities between
those spatial locations that are close to each other, and kOU
imposes similarities between those locations that are at the
same distance from the center of the die; see, e.g., [18] for
additional details. The length-scale parameters `SE and `OU
control the extend of these similarities, i.e., the range wherein
the influence of one point on another is significant.

C. Surrogate Construction

Let ϑ : Ω→ R be a quantity of interest dependent on u. For
convenience, ϑ is assumed to be one-dimensional, which will be
generalized later on. In order to give a computationally efficient
probabilistic characterization of ϑ, we utilize nonintrusive
spectral decompositions based on orthogonal polynomials.
The corresponding mathematical foundation is outlined in
Appendix D and Appendix E, and here we go directly to
the main results obtained in those sections.

1) Classical Decomposition: Assume ϑ ∈ L2(Ω,F ,P) (see
Sec. IV). Then ϑ can be expanded into the following series:

ϑ ≈ CnξlC [ϑ] :=
∑

α∈A(lC)

ϑ̂α ψα(ξ) (7)

where lC is the expansion level; α = (αi) ∈ Nnξ0 is a multi-
index; A (lC) is an index set to be discussed shortly; and ψα(ξ)
is an nξ-variate Hermite polynomial constructed as a product
of normalized one-dimensional Hermite polynomials of orders
specified by the corresponding elements of α.

As discussed in Appendix D, each coefficient ϑ̂α in (7) is
an nξ-dimensional integral of the product of ϑ with ψα, and
this integral should be computed numerically. To this end, we
construct a quadrature rule and calculate ϑ̂α as

ϑ̂α ≈ Q
nξ
lQ

[ϑψα] :=

nQ∑
i=1

ϑ(T [xi])ψα(xi)wi (8)

where lQ is the quadrature level, and {(xi ∈ Rnξ , wi ∈ R)}nQ
i=1

are the points and weights of the quadrature. The multivariate
quadrature operator QnξlQ is based on a set of univariate
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operators and is constructed as follows:

QnξlQ =
⊕

α∈A(lQ)

∆α1
⊗ · · · ⊗∆αnξ

. (9)

The notation used in the above equation is not essential for
the present discussion and is explained in Appendix E. The
important aspect to note is the structure of this operator, namely,
the index set A (lQ), which we shall come back to shortly.

The standard choice of A (lC) in (7) is {α : ‖α‖1 ≤ lC},
which is called an isotropic total-order index set. Isotropic refers
to the fact that all dimensions are trimmed identically, and total-
order refers to the structure of the corresponding polynomial
space. In (8), ψα is a polynomial of total order at most lC , and
ϑ is modeled as such a polynomial. Hence, the integrand in (8)
is a polynomial of total order at most 2lC . Having this aspect
in mind, one usually constructs a quadrature rule such that it
is exact for polynomials of total order 2lC [16]. In this work,
we employ Gaussian quadratures for integration, in which case
a quadrature of level lQ is exact for integrating polynomials
of total order 2lQ + 1 [19] (see also Appendix E). Therefore,
it is sufficient to keep lC and lQ equal. More generally, the
index sets A (lC) and A (lQ) should be synchronized; in what
follows, we shall denote both by A (l).

2) Anisotropic Decomposition: In the context of sparse
grids, an important generalization of the construction in (9) is
the so-called anisotropic Smolyak algorithm [20]. The main
difference between the isotropic and anisotropic versions lies
in the constraints imposed on A (l). An anisotropic total-order
index set is defined as follows:

A (l) =
{
α : 〈c,α〉 ≤ l min

i
ci

}
(10)

where c = (ci) ∈ Rnξ , ci ≥ 0, is a vector assigning importance
coefficients to each dimension, and 〈·, ·〉 is the standard inner
product on Rnξ . Equation (10) plugged into (9) results in a
sparse grid which is exact for the polynomial space that is
tailored using the same index set.

The above approach allows one to leverage the highly
anisotropic behaviors inherent for many practical problems
[20]. It provides a great control over the computational time
associated with the construction of spectral decompositions: a
carefully chosen importance vector c in (10) can significantly
reduce the number of polynomial terms in (7) and the number
of quadrature points needed in (8) to compute the coefficients
of those terms. The question to discuss now is the choice of
c. In this regard, we rely on the variance contributions of the
dimensions given by λ in (5). Specifically, we let

c = λγ := (λγi )
nξ
i=1 (11)

where γ ∈ [0, 1] is a tuning parameter. The isotropic scenario
can be recovered by setting γ = 0; the other values of γ
correspond to various levels of anisotropy with the maximum
attained by setting γ = 1.

Let us sum up what we have achieved at this point. In
order to give a probabilistic characterization of a quantity of
interest, we perform polynomial expansions as shown in (7).
The coefficients of such expansions are evaluated by means
of Gaussian quadratures as shown in (8). The quadratures are
constructed using the Smolyak formula given in (9). The index
sets used in both (7) and (9) are the one given in (10) wherein

Algorithm 1 Surrogate construction

Input: Algorithm X % the subroutine evaluating ϑ
Output: v̂ ∈ RnC % the expansion coefficients

1: for i← 1 to nQ do % for each quadrature point xi
2: u ← T [xi]
3: v(i) ← call Algorithm X for u
4: end for
5: v̂ ← Π v

the anisotropic weights are set according to (5) and (11).
3) Efficient Implementation: The pair of ξ and c uniquely

characterizes the uncertainty quantification problem at hand.
Once they have been identified, and the desired approximation
level l = lC = lQ has been specified, the corresponding
polynomial basis and quadrature stay the same for all quantities
that one might be interested in studying. This observation is of
high importance as a lot of preparatory work can and should be
done only once and then stored for future uses. In particular, the
construction in (7) can be reduced to one matrix multiplication
with a precomputed matrix, which we shall demonstrate next.

Let nC = #A (l) be the cardinality of A (l), which is also
the number of polynomial terms and, hence, coefficients in (7).
Assume the multi-indices contained in A (l) are arranged in a
vector (αi)

nC
i=1, which gives a certain ordering. Now, let

Π =
(
πij = ψαi(xj)wj

)i=nC, j=nQ

i=1, j=1
, (12)

that is, πij is the polynomial corresponding to the ith multi-
index evaluated at the jth quadrature point and multiplied by
the jth quadrature weight. We refer to Π as the projection
matrix. The coefficients in (7) can now be computed as

v̂ = Π v (13)

where

v̂ = (ϑ̂i)
nC
i=1 and v =

(
ϑ(T [xi])

)nQ

i=1
. (14)

It can be seen that (13) is a matrix version of (8). Π is
the one that should be precomputed. The pseudocode of the
procedure is given in Algorithm 1 wherein Algorithm X stands
for the routine that calculates ϑ for a given u. Needless to say,
Algorithm X is problem specific and has a crucial impact on the
performance of the whole procedure presented in this section:
any modeling errors inherent to this algorithm can propagate
to the output of the uncertainty analysis. Algorithm X will be
further discussed in Sec. VII–IX.

D. Postprocessing

The function given by (7) is nothing more than a polynomial;
hence, it is easy to interpret and easy to evaluate. Consequently,
having constructed such an expansion, various statistics about
ϑ can be estimated with little effort. Moreover, (7) yields
analytical formulae for the expected value and variance of ϑ
solely based on the coefficients of (7):

E [ϑ] = ϑ̂0 and Var [ϑ] =
∑

α∈A(l)\{0}

ϑ̂2
α (15)

where 0 = (0) is a multi-index with all entries equal to zero.
Such quantities as the cumulative distribution and probability
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density functions can be estimated by sampling (7); each sample
is a trivial evaluation of a polynomial.

Remark 2. When ϑ is multidimensional, we shall consider it
as a row vector with an appropriate number of elements. Then
all the operations with respect to ϑ, such as those in (7), (8),
and (15), should be undertaken elementwise. In (13), (14), and
Algorithm 1, v and v̂ are to be treated as matrices with nC
rows, and ϑi as a row vector. The output of Algorithm X is
assumed to be automatically reshaped into a row vector.

In what follows, we shall apply the probabilistic analysis
developed in this section to a number of concrete problems:
temperature analysis (Sec. VII), reliability analysis (Sec. VIII),
and reliability optimization (Sec. IX).

VII. TEMPERATURE ANALYSIS

In this section, we detail our temperature analysis, which
is suitable for system-level studies. We shall cover both the
transient and dynamic steady-state scenarios as the former
is a prerequisite for the latter. Since temperature is a direct
consequence of power, we begin with the power model utilized
in the proposed framework.

A. Power Model

Recall that the system is composed of np processing elements
and depends on the outcome of the probability space ω ∈ Ω via
u. The total dissipation of power is modeled as the following
system of np temporal stochastic process:

p(t,u,q(t,u)) = pdyn(t) + pstat(u,q(t,u)) (16)

where, for time t ≥ 0, pdyn ∈ Rnp and pstat ∈ Rnp are vectors
representing the dynamic and static components of the total
power, respectively, and q ∈ Rnp is the corresponding vector
of temperature. pdyn is deterministic, and the rest are random.

Remark 3. In (16), pdyn has no dependency on u as the
influence of process variation on the dynamic power is known
to be negligibly small [1]. On the other hand, the variability of
pstat is substantial and is further magnified by the well-known
interdependency between leakage and temperature.

B. Thermal Model

Based on the information gathered in S (see Sec. V), an
equivalent thermal RC circuit of the system is constructed
[21]. The circuit comprises nn thermal nodes, and its structure
depends on the intended level of granularity that impacts the
resulting accuracy. For clarity, we assume that each processing
element is mapped onto one corresponding node, and the
thermal package is represented as a set of additional nodes.

The thermal dynamics of the system are modeled using the
following system of differential-algebraic equations [4], [6]:

d s(t,u)

dt
= A s(t,u) + B p(t,u,q(t,u)) (17a)

q(t,u) = BT s(t,u) + qamb (17b)
where

A = −C−
1
2 GC−

1
2 and B = C−

1
2 M.

For time t ≥ 0, p ∈ Rnp , q ∈ Rnp , and s ∈ Rnn are the power,
temperature, and state vectors, respectively. qamb ∈ Rnp is a
vector of the ambient temperature. M ∈ Rnn×np is a matrix
that distributes the power dissipation of the processing elements
across the thermal nodes; without loss of generality, M is a
rectangular diagonal matrix wherein each diagonal element is
equal to unity. C ∈ Rnn×nn and G ∈ Rnn×nn are a diagonal
matrix of the thermal capacitance and a symmetric, positive-
definite matrix of the thermal conductance, respectively.

C. Our Solution

Let us fix ω ∈ Ω, meaning that u is assumed to be known,
and consider the system in (17) as deterministic. In general,
(17a) is a system of ordinary differential equations which is
nonlinear due to the power term, given in (16) as an arbitrary
function. Hence, the system in (17) does not have a general
closed-form solution. A robust and computationally efficient
solution to (17) for a given u is an essential part of our
probabilistic framework. In order to attain such a solution, we
utilize a numerical method from the family of exponential
integrators [22]. The procedure is described in Appendix A,
and here we use the final result.

Recall that we are to analyze a dynamic power profile Pdyn
covering a time interval [0, tperiod] with nt samples that are
evenly spaced in time. The transient solution of (17a) is reduced
to the following recurrence for k = 1, 2, . . . , nt:

sk = E sk−1 + F pk (18)

where the subscript k stands for time k∆t, s0 = 0,

E = eA∆t, and F = A−1(eA∆t − I) B.

For computational efficiency, we perform the eigendecomposi-
tion of the state matrix A:

A = VΛVT (19)

where V and Λ = diag (λi) are an orthogonal matrix of the
eigenvectors and a diagonal matrix of the eigenvectors of A,
respectively. The matrices E and F are then

E = V diag
(
eλi∆t

)
VT and

F = V diag
(
eλi∆t − 1

λi

)
VTB.

To sum up, the derivation up to this point is sufficient for
transient temperature analysis via (18) followed by (17b).

Remark 4. Although the focus of this paper is on temperature,
each temperature analysis developed is accompanied by the
corresponding power analysis as the two are inseparable due
to the leakage-temperature interplay. Consequently, when it
is appropriate, one can easily extract only the (temperature-
aware) power part of the presented solutions.

Let us move on to the dynamic steady-state (DSS) case.
Assume for now that pstat in (16) does not depend on q, i.e.,
no interdependency between leakage and temperature. The DSS
boundary condition is s1 = snt+1. In other words, the system
is required to come back to its original state by the end of the
analyzed time frame. This constraint and (18) yield a block-
circulant system of nnnt linear equations with nnnt unknowns.
As describe in detail in [4], the system can be efficiently solved
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Algorithm 2 Deterministic dynamic steady-state temperature
analysis with no static dissipation of power

Input: P ∈ Rnp×nt

Output: Q ∈ Rnp×nt

1: Â ← F P
2: â ← Â(:, 1)
3: for k ← 2 to nt do
4: â ← E â + Â(:, k)
5: end for
6: S(:, 1) ← V diag

((
1− ent∆tλi

)−1
)

VT â

7: for k ← 2 to nt do
8: S(:, k) ← E S(:, k − 1) + Â(:, k − 1)
9: end for

10: Q ← BTS + Qamb

Algorithm 3 Deterministic dynamic steady-state temperature
analysis considering the static power

Input: Pdyn ∈ Rnp×nt and u ∈ Rnp

Output: Q ∈ Rnp×nt and P ∈ Rnp×nt

1: Q ← Qamb
2: repeat
3: P ← Pdyn + Pstat(u,Q)
4: Q ← call Algorithm 2 for P
5: until a stopping condition is satisfied

by exploiting its particular structure and the decomposition in
(19). The pseudocode of this algorithm, which delivers the exact
solution under the above assumptions, is given in Algorithm 2.
Here we adopt MATLAB’s [23] notations A(k, :) and A(:, k)
to refer to the kth row and the kth column of a matrix A,
respectively. In the pseudocode, auxiliary variables are written
with hats, and Qamb is a matrix of the ambient temperature.

Remark 5. The time complexity of direct dense and sparse
solvers (e.g., the LU decomposition) of the system of linear
equations is O

(
nt

3nn
3
)

while the one of Algorithm 2 is only
O
(
ntnn

2 + nn
3
)
, which the algorithm is able to achieve by

exploiting the specific structure of the system; see [4].

Let us now bring the leakage-temperature interdependence
into the picture. To this end, we repeat Algorithm 2 for a
sequence of total power profiles {Pk = Pdyn+Pstat,k} wherein
the static part Pstat,k is being updated using (16) given the
temperature profile Qk−1 computed at the previous iteration
starting from the ambient temperature. The procedure stops
when the sequence of temperature profiles {Qk} converges
in an appropriate norm, or some other stopping condition is
satisfied (e.g., a maximal temperature constraint is violated).
This procedure is illustrated in Algorithm 3.

In Algorithm 3, Pstat(u,Q) should be understood as a call to
a subroutine that returns an np×nt matrix wherein the (i, k)th
element is the static component of the power dissipation of the
ith processing element at the kth moment of time with respect
to u and the temperature given by the (i, k)th entry of Q.

Remark 6. A widespread approach to account for leakage is
to linearize it with respect to temperature. As shown in [2],

already one linear segment can deliver sufficiently accurate
results. One notable feature of such a linearization is that
no iterating-until-convergence is needed in this case; see
[4]. However, this technique assumes that the only varying
parameter of leakage is temperature, and all other parameters
have nominal values. In that case, it is relatively easy to decide
on a representative temperature range and undertake a one-
dimensional curve-fitting procedure with respect to it. In our
case, the power model has multiple parameters stepping far
from their nominal values, which makes it difficult to construct
a good linear fit with respect to temperature. Thus, in order
to be accurate, we use a nonlinear model of leakage.

So far in this subsection, u has been assumed to be
deterministic. Now we turn to the stochastic scenario and
let u be random. Then we apply Algorithm 1 to one particular
quantity of interest ϑ. Specifically, ϑ is now the temperature
profile Q corresponding to a given Pdyn. Since Q is an np×nt
matrix, following Remark 2, ϑ is viewed as an npnt-element
row vector, in which case each coefficient ϑ̂α in (7) is also such
a vector. The projection in (13) and, consequently, Algorithm 1
should be interpreted as follows: v is an nQ × npnt matrix,
and the ith row of this matrix is the temperature profile
computed at the ith quadrature point and reshaped into a
row vector. Similarly, v̂ is an nC × npnt matrix, and the ith
row of this matrix is the ith coefficient ϑ̂αi of the spectral
decomposition in (7) (recall that a fixed ordering is assumed to
be imposed on the multi-indices). Keeping the above in mind,
a call to Algorithm 1 should be made such that Algorithm X
points at an auxiliary routine which receives u, forwards it
to Algorithm 3 along with Pdyn, and returns the resulting
temperature profile to Algorithm 1. The constructed expansion
can now be postprocessed as needed; see Sec. VI-D.

To give a concrete example, for a dual-core system (np = 2)
with one independent random variable (nξ = 1), a second-level
expansion (lC = 2) of the temperature profile with 100 time
steps (nt = 100) can be written as follows (see (7)):

ϑ ≈ ϑ̂0 + ϑ̂1ξ + ϑ̂2(ξ2 − 1),

which is a polynomial in ξ, and each coefficient is a vector
with npnt = 200 elements. Then, for any outcome ξ ≡ ξ(ω),
the corresponding temperature profile Q can be evaluated by
plugging in ξ into the above equation and reshaping the result
into an np × nt = 2× 100 matrix. In this case, the three rows
of v̂ are ϑ̂0, ϑ̂1, and ϑ̂2; the first one is also a flattened version
of the expected value of Q as shown in (15).

VIII. RELIABILITY ANALYSIS

In this section, our primary objective is to build a flexible and
computationally efficient framework for the reliability analysis
of electronic systems affected by process variation. Let us
begin with a description of a generic reliability model and
make several observations with respect to it.

A. Reliability Model
Let τ : Ω → R be a random variable representing the

lifetime of the considered system. The lifetime is the time span
until the system experiences a fault after which the system no
longer meets the imposed requirements. Let Fτ (·|θ) be the
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distribution of τ where θ = (θi) is a vector of parameters. The
survival function of the system is

Rτ (t|θ) = 1− Fτ (t|θ).

The overall lifetime τ is a function of the lifetimes of the
processing elements, which are denoted by a set of random
variables {τi}

np
i=1. Each τi is characterized by a physical model

of wear [5] describing the fatigues that the corresponding
processing element is exposed to. Each τi is also assigned an
individual survival function Rτi(·|θ) describing the failures
due to those fatigues. The structure of Rτ (·|θ) with respect
to {Rτi(·|θ)}np

i=1 is problem specific, and it can be especially
diverse in the context of fault-tolerant systems. Rτ (·|θ) is to be
specified by the designer of the system, and it is assumed to be
included in the specification S (see Sec. V). To give an example,
suppose the failure of any of the np processing elements makes
the system fail, and {τi}

np
i=1 are conditionally independent given

the parameters gathered in θ. In this scenario,

τ =
np

min
i=1

τi and Rτ (t|θ) =

np∏
i=1

Rτi(t|θ). (20)

Our work in this context is motivated by the following two
observations. First, temperature is the driving force of the
dominant failure mechanisms. The most prominent examples
include electromigration, time-dependent dielectric breakdown,
stress migration, and thermal cycling [10]; see [5] for an
exhaustive overview. All of the aforementioned mechanisms
have strong dependencies on the operating temperature, which
is taken into account by considering the parameters in θ
as adequate functions of temperature. At the same time,
temperature is tightly related to process parameters, such as the
effective channel length and gate-oxide thickness, and can vary
dramatically when those parameters deviate from their nominal
values [6], [9]. Meanwhile, the state-of-the-art techniques for
reliability analysis of electronic systems lack a systematic
treatment of process variation and, in particular, of the effect
of process variation on temperature.

Second, having determined a probabilistic model Rτ (·|θ) of
the considered system, the major portion of the associated
computational time is ascribed to the evaluation of the
parameterization θ rather than to the model per se, that is,
when θ is known. For instance, θ often contains estimates
of the mean time to failure of each processing element given
for a range of stress levels. Therefore, θ typically involves
(computationally intensive) full-system simulations including
power analysis paired with temperature analysis [10].

Remark 7. It is important to realize that there are two levels of
probabilistic modeling here. First, the reliability model per se
is a probabilistic model describing the lifetime of the system.
Second, the parameterization θ is another probabilistic model
characterizing the impact of the uncertainty due to process
variation on the reliability model. Consequently, the overall
model can be thought of as a probability distribution over
probability distributions. Given an outcome of the fabrication
process, that is, θ, the lifetime remains random.

B. Our Solution
Guided by the aforementioned observations, we propose

to use the spectral decompositions developed in Sec. VI and

Sec. VII in order to construct a light surrogate for θ. The
proposed technique is founded on the basis of the state-of-the-
art reliability models by enriching their modeling capabilities
with respect to process variation and by speeding up the
associated computational process. This approach allows one
to seamlessly incorporate into reliability analysis the effect
of process variation on process parameters. In particular,
the framework allows for a straightforward propagation of
the uncertainty from process parameters through power and
temperature to the lifetime of the system. In contrast to the
straightforward use of Monte Carlo (MC) sampling, the spectral
representation that we construct makes the subsequent analysis
highly efficient from the computational perspective.

It is worth noting that Rτ (·|θ) is left intact, meaning that our
approach does not impose any restrictions on Rτ (·|θ). Thus,
the user can take advantage of various reliability models in a
straightforward manner. Naturally, this also implies that the
modeling errors associated with the chosen Rτ (·|θ) can affect
the quality of the results delivered by our technique. Therefore,
choosing an adequate reliability model for the problem at hand
is a responsibility of the user.

Let us now apply our general technique to address one of
the major concerns of the designer of electronic systems: the
thermal-cycling fatigue [5]. This fatigue has a sophisticated
dependency on temperature: apart from average/maximal
temperatures, the frequencies and amplitudes of temperature
fluctuations matter in this case. Suppose that the system at
hand is experiencing a periodic workload due to the execution
of a periodic or nearly periodic application with period tperiod.
The power consumption is changing during the execution of
the application, and, thus, the system is inevitably exposed
to the damage from thermal oscillations. The corresponding
temperature profile Q is then a DSS profile, which, for a given
u, can be computed using Algorithm 3.

Assume further that the structure of the reliability model
is the one shown in (20). Regarding the individual survival
functions, we shall rely on Weibull distributions. In this case,

lnRτi(t|θ) = −
(
t

ηi

)βi
(21)

and the mean time to failure is

µi = E [τi] = ηi Γ

(
1 +

1

βi

)
(22)

where ηi and βi are the scale and shape parameters of the
distribution, respectively, and Γ is the gamma function. At this
point, θ = (η1, . . . , ηnp , β1, . . . , βnp).

During one iteration of the application, the temperature of
the ith processing element exhibits ns i cycles. Each cycle
generally has different characteristics and, therefore, causes
different damage to the system. This aspect is taken into account
by adjusting ηi as follows. Let Q be the DSS temperature
profile of the system under analysis and denote by Q(i, :) the
ith row of Q, which corresponds to the temperature curve of
the ith processing element. First, Q(i, :) is analyzed using a
peak-detection procedure in order to extract the extrema of this
curve. The found extrema are then fed to the rainflow counting
algorithm [10] for an adequate identification of thermal cycles.
Denote by nc ij the expected number of cycles to failure
corresponding to the ith processing element and its jth cycle
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(as if it was the only cycle damaging the processing element).
nc ij is computed using the corresponding physical model of
wear that can be found in [4], [5], [10]. Let ηij and µij be the
scale parameter and expectation of the lifetime corresponding
to the ith processing element under the stress of the jth cycle;
the two are related as shown in (22). Then [4], [10]

ηi =
tperiod

Γ
(

1 + 1
βi

)∑ns i
j=1

1
nc ij

. (23)

Note that ηi accounts for process variation via temperature (in
the above equation, nc ij is a function of temperature).

Remark 8. A cycle need not be formed by adjacent extrema;
cycles can overlap. In this regard, the rainflow counting method
is known to be the best as it efficiently mitigates overestimation.
A cycle can be a half cycle, meaning that only an upward
or downward temperature swing is present in the time series,
which is assumed to be taken into account in nc ij .

The shape parameter βi is known to be indifferent to
temperature. For simplicity, we also assume that βi does not
depend on process parameters and βi = β for i = 1, 2, . . . , np.
However, we would like to emphasize that these assumptions
are not a limitation of the proposed techniques. Then it can
be shown that the compositional survival function Rτ (·|θ)
corresponds to a Weibull distribution, and the shape parameter
of this distribution is β whereas the scale parameter is given
by the following equation:

η =

(∑(
1

ηi

)β)− 1
β

(24)

where ηi is as in (23). Consequently, the parameterization of
the reliability model has boiled down to two parameters, η and
β, among which only η is random.

Now we let the scale parameter η be our quantity of interest
ϑ and apply the technique in Sec. VI to this quantity. In this
case, Algorithm X in Algorithm 1 is an auxiliary function that
makes a call to Algorithm 3, processes the resulting temperature
profile as it was described earlier in this subsection, and returns
η computed according to the formula in (24). Consequently, we
obtain a light polynomial surrogate of the parameterization of
the reliability model, which can be then studied from various
perspectives. The example for a dual-core system given at the
end of Sec. VII-C can be considered in this context as well
with the only change that the dimensionality of the polynomial
coefficients would be two here (since η ∈ Rnp and np = 2).

IX. RELIABILITY OPTIMIZATION

In this section, the proposed analysis techniques are applied
in the context of design-space exploration.

A. Problem Formulation
Consider a periodic application which is composed of a

number of tasks and is given as a directed acyclic graph. The
graph has nv vertices representing the tasks and a number of
edges specifying data dependencies between those tasks. Any
processing element can execute any task, and each pair of a
processing element and a task is characterized by an execution
time and dynamic power. Since the proposed techniques

are orientated towards the design stage, static scheduling is
considered, which is typically done offline. More specifically,
the application is scheduled using a static cyclic scheduler,
and schedules are generated using the list scheduling policy
[24]. A schedule is defined as a mapping of the tasks onto
the processing elements and the corresponding starting times;
we shall denote it by S. The goal of our optimization is to
find such a schedule S that minimizes the energy consumption
while satisfying certain constraints.

Since energy is a function of power, and power depends
on a set of uncertain parameters, the energy consumption is
a random variable at the design stage, which we denote by E.
Our objective is to minimize the expected value of E:

min
S

E [E(S)] (25)

where
E(S) = ∆t

∑
P(S),

∆t is the sampling interval of the power profile P, and
∑

P
denotes the summation over all elements of P. Hereafter, we
also emphasize the dependency on S. Our constraints are (i)
time, (ii) temperature, and (iii) reliability as follows. (i) The
period of the application is constrained by tmax (a deadline).
(ii) The maximal temperature that the system can tolerate is
constrained by qmax, and ρburn is an acceptable probability
of burning the chip. (iii) The minimal time that the system
should survive is constrained by τmin, and ρwear is an acceptable
probability of having a premature fault due to wear. The three
constraints are formalized as follows:

tperiod(S) ≤ tmax, (26)
P (Q(S) ≥ qmax) ≤ ρburn, and (27)
P (T(S) ≤ τmin) ≤ ρwear. (28)

In (26)–(28), tperiod is the period of the application according
to the schedule,

Q(S) = ‖Q(S)‖∞,

T(S) = E [τ(S) | η] = η(S) Γ

(
1 +

1

β

)
, and

‖Q‖∞ denotes the extraction of the maximal value from the
temperature profile Q. The last two constraints, i.e., (27) and
(28), are probabilistic as the quantities under consideration are
random. In (28), we set an upper bound on the probability
of the expected value of τ , and it is important to realize that
this expectation is a random variable itself due to the nested
structure of the reliability model described in Remark 7.

B. Our Solution
In order to evaluate (25)–(28), we utilize the uncertainty

analysis technique presented in Sec. VI. In this case, the
quantity of interest is a vector with three elements:

ϑ = (E,Q,T). (29)

Although it is not spelled out, each quantity depends on S. The
first element corresponds to the energy consumption used in
(25), the second element is the maximal temperature used in
(27), and the last one is the scale parameter of the reliability
model (see Sec. VIII) used in (28). The uncertainty analysis
in Sec. VI should be applied as explained in Remark 2. In
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Algorithm 1, Algorithm X is an intermediate procedure that
makes a call to Algorithm 3 and processes the resulting power
and temperature profiles as required by (29).

We use a genetic algorithm for optimization. Each chro-
mosome is a 2nv-element vector (twice the number of
tasks) concatenating a pair of two vectors. The first is
a vector in {1, 2, . . . , np}nv that maps the tasks onto the
processing elements (i.e., a mapping). The second is a vector
in {1, 2, . . . , nv}nv that orders the tasks according to their
priorities (i.e., a ranking). Since we rely on a static cyclic
scheduler and the list scheduling policy [24], such a pair
of vectors uniquely encodes a schedule S. The population
contains 4nv individuals which are initialized using uniform
distributions. The parents for the next generation are chosen
by a tournament selection with the number of competitors
equal to 20% of nv. A one-point crossover is then applied to
80% of the parents. Each parent undergoes a uniform mutation
wherein each gene is altered with probability 0.01. The top five-
percent individuals always survive. The stopping condition is
the absence of improvement within 10 successive generations.

Let us turn to the evaluation of a chromosome’s fitness. We
begin by checking the timing constraint given in (26) as it
does not require any probabilistic analysis; the constraint is
purely deterministic. If (26) is violated, we set the fitness to
the amount of this violation relative to the constraint—that is,
to the difference between the actual application period and the
deadline tmax divided by tmax—and add a large constant, say,
C, on top. If (26) is satisfied, we perform our probabilistic
analysis and proceed to checking the constraints in (27) and
(28). If any of the two is violated, we set the fitness to the total
relative amount of violation plus C/2. If all the constraints
are satisfied, the fitness value of the chromosome is set to the
expected consumption of energy, as in shown in (25).

In order to speed up the optimization, we make use of
caching and parallel computing. Specifically, the fitness value of
each evaluated chromosome is stored in memory and pulled out
when a chromosome with the same set of genes is encountered,
and unseen (not cached) individuals are assessed in parallel.

X. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed
techniques. All the experiments are conducted on a GNU/Linux
machine equipped with 16 processors Intel Xeon E5520
2.27 GHz and 24 GB of RAM. Parallel computing is utilized
only in the experiments reported in Sec. X-C.

A. Configuration

We consider a 45-nm technological process and rely on
the 45-nm standard-cell library published and maintained by
NanGate [25]. The effective channel length and gate-oxide
thickness are assumed to have nominal values equal to 22.5 nm
and 1 nm, respectively. Following the information about process
variation reported by ITRS [26], we assume that each process
parameter can deviate up to 12% of its nominal value, and
this percentage is treated as three standard deviations. The
corresponding probabilistic model is the one described in
Sec. VI-B. Regarding the correlation function in (6), the weight
coefficient $ is set to 0.5, and the length-scale parameters

`SE and `OU are set to half the size of the die (see the next
paragraph). The model order reduction is set to preserve 95%
of the variance of the problem (see also Appendix C). The
tuning parameter γ in (11) is set to 0.25.

Heterogeneous platforms and periodic applications are
generated randomly using TGFF [27] in such a way that the
execution time of each task is uniformly distributed between
10 and 30 ms, and its dynamic power between 6 and 20 W.
The floorplans of the platforms are regular grids wherein each
processing element occupies 2×2 mm2. Thermal RC circuits—
which are essentially pairs of a thermal capacitance matrix C
and a thermal conductance G matrix needed in the equations
given in Sec. VII-B—are constructed using the HotSpot thermal
model [21]. The granularity of power and temperature profiles,
that is, ∆t in Sec. VII-C and Appendix A, is set to 1 ms; in
practice, ∆t should be set to a value that is reasonable for the
problem at hand. The stopping condition in Algorithm 3 is a
decrease of the normalized root-mean-square error between
two successive temperature profiles smaller than 1%, which
typically requires 3–5 iterations.

The leakage model needed for the calculation of Pstat(u,Q)
in Algorithm 3 is based on SPICE simulations of a series
of CMOS invertors taken from the NanGate cell library and
configured according to the high-performance 45-nm PTM [28].
The simulations are performed on a fine-grained and sufficiently
broad three-dimensional grid comprising the effective channel
length, gate-oxide thickness, and temperature; the results are
tabulated. The interpolation facilities of MATLAB [23] are
then utilized whenever we need to evaluate the leakage power
for a particular point within the range of the grid. The output
of the constructed leakage model is scaled up to account for
about 40% of the total power dissipation [2].

B. Probabilistic Analysis
Our objective here is to study the accuracy and speed

of the proposed solutions. Since the optimization procedure
described in Sec. IX embraces all the techniques developed
throughout the paper, we shall perform the assessment directly
in the design-space-exploration context. In other words, we do
not consider temperature analysis or reliability analysis as a
separate uncertainty quantification problem in our experiments
and shall focus on the quantity of interest given in (29). This
quantity plays the key role as the objective function in (25)
and the constraints in (27) and (28) are entirely based on it.

We shall compare our performance with the performance of
Monte Carlo (MC) sampling. The operations performed by the
MC-based approach for one sample are exactly the same as
those performed by our technique for one quadrature point. The
only difference is that no reduction of any kind is undertaken
prior to MC sampling. In other words, the MC-based approach
samples the original model and, hence, does not compromise
any resulting accuracy. The number of MC samples is set
to 104, which is a practical assumption that conforms to the
experience from the literature [6], [8], [9], [10] and to the
theoretical estimates given in [7]. Hence, we consider this
setup of MC sampling to be a paragon of accuracy.

The results concerning accuracy are displayed in Table I
where we consider a quad-core platform, i.e., np = 4, with
ten randomly generated applications and vary the level of
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Table I
ASSESSMENT OF THE ACCURACY

lC nC nQ εE, KLD εQ, KLD εT , KLD

1 3 5 0.0415 0.1935 0.3390
2 10 21 0.0085 0.0187 0.0320
3 22 69 0.0022 0.0025 0.0046
4 49 193 0.0017 0.0024 0.0033
5 111 589 0.0016 0.0027 0.0037

Table II
ASSESSMENT OF THE COMPUTATIONAL SPEED

np nξ nC nQ Time, s Speedup, times

2 4 19 57 0.18 175.44
4 6 22 69 0.26 144.93
8 8 27 81 0.73 123.46

16 10 30 93 1.28 107.53
32 10 33 101 2.23 99.01

polynomial expansions lC from one to five. The errors for the
three components of ϑ = (E,Q,T) are denoted by εE, εQ,
and εT , respectively. Each error indicator shows the distance
between the empirical probability distributions produced by
our approach and the ones produced by MC sampling, and
the measure of this distance is the popular Kullback–Leibler
divergence (KLD) wherein the results of MC sampling are
treaded as the “true” ones. The KLD takes nonnegative values
and attains zero only when two distributions are equal almost
everywhere [14]. In general, the errors decrease as lC increases.
This trend, however, is not monotonic for expansions of high
levels (see εQ and εT for lC = 5). The observation can
be ascribed to the random nature of sampling and the fact
that the reduction procedures, which we undertake to gain
speed, might impose limitations on the accuracy that can be
attained by polynomial expansions. Table I also contains the
numbers of polynomial terms nC and quadrature points nQ
corresponding to each value of lC . We also performed the
above experiment for platforms with fewer/more processing
elements; the observations were similar to the ones in Table I.

Based on Table I, we consider the results delivered by third-
level polynomial expansions, where the KLD drops to the third
decimal place for all quantities, to be sufficiently accurate, and,
therefore, we fix lC = lQ = l = 3 (recall the notation in the
last paragraph of Sec. VI-C1) for the rest of the experiments.

Table II displays the time needed to perform one characteri-
zation of ϑ for the number of processing elements np swept
from 2 to 32. It can be seen that the computational time ranges
from a fraction of a second to around two seconds. More
importantly, Table II provides information about a number of
complementary quantities that are of high interest for the user
of the proposed techniques, which we discuss below.

The primary quantity to pay attention to is the number of
random variables nξ preserved after the reduction procedure
described in Sec. VI-B and Appendix C. Without this reduction,
nξ would be 2np as there are two process parameters per
processing element. It can be seen that there is no reduction
for the dual-core platform while around 80% of the stochastic
dimensions have been eliminated for the platform with 32 cores.
In addition, one can note that nξ is the same for the last two
platforms. The magnitude of reduction is solely determined
by the correlation patterns assumed (see Sec. VI-B) and the

floorplans of the considered platforms.
Another important quantity displayed in Table II is the

number of quadrature nodes nQ. This number is the main
indicator of the computational complexity of our probabilistic
analysis: it equals to the number of times Algorithm X in
Algorithm 1 is executed to construct a polynomial expansion
of (29) needed for the evaluation of the fitness function. It can
be seen that nQ is very low. To illustrate this, the last column
of Table II shows the speedup of our approach with respect to
104 MC. Our solution is faster by approximately 100–200 times
while delivering highly accurate results as discussed earlier. It
should be noted that the comparison has been drawn based on
the number of evaluation points rather than on the actual time
since the relative cost of other computations is negligible.

To conclude, the proposed solutions to temperature and
reliability analyses under process variation have been assessed
using the compositional quantity of interest given in (29). The
results shown in Table I and Table II allow us to conclude that
our approach is both accurate and computationally efficient.

C. Probabilistic Optimization
In this subsection, we report the results of the optimization

procedure formulated in Sec. IX. To reiterate, the objective is
to minimize energy as shown in (25) while satisfying a set of
constraints on the application period, maximal temperature, and
minimal lifetime as shown in (26), (27), and (28), respectively.
We employ a genetic algorithm for optimization. The population
is evaluated in parallel using 16 processors; this job is delegated
to the parallel computing toolbox of MATLAB [23].

The goal of this experiment is to justify the following
assertion: reliability analysis has to account for the effect
of process variation on temperature. To this end, for each
problem (a pair of a platform and an application), we shall run
the optimization procedure twice: once using the setup that has
been described so far and once making the objective in (25)
and the constraints in (27) and (28) deterministic. To elaborate,
the second run assumes that temperature is deterministic and
can be computed using the nominal values of the process
parameters. Consequently, only one simulation of the system is
needed in the deterministic case to evaluate the fitness function,
and (25), (27), and (28) become, respectively,

min
S

E(S), Q(S) ≥ qmax, and T(S) ≤ τmin.

We consider platforms with np = 2, 4, 8, 16, and 32 cores.
Ten applications with the number of tasks nv = 20np (that
is, 40 tasks for 2 cores up to 640 tasks for 32 cores) are
randomly generated for each platform; thus, 50 problems in
total. The floorplans of the platforms and the task graphs of the
applications, including the execution time and dynamic power
consumption of each task on each core, are available online at
[29]. ρburn and ρwear in (27) and (28), respectively, are set to
0.01. Due to the diversity of the problems, tmax, qmax, and τmin
are found individually for each problem, ensuring that they
make sense for the subsequent optimization. For instance, qmax
was found within the range 90–120◦C. Note, however, that
these three parameters stay the same for both the probabilistic
and deterministic variants of the optimization.

The obtained results are reported in Table III, and the most
important message is in the last column. Failure rate refers
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Table III
STOCHASTIC VS. DETERMINISTIC OPTIMIZATION

Stochastic Deterministic
np Time, min Time, min Failure rate, %

2 1.07 0.67 40
4 5.38 1.99 60
8 16.65 3.89 70

16 56.23 7.54 100
32 341.08 9.26 100

to the ratio of the solutions produced by the deterministic
optimization that, after being reevaluated using the probabilistic
approach (i.e., after taking process variation into account), have
been found to be violating the probabilistic constraints given in
(27) and/or (28). To give an example, for the quad-core platform,
six out of ten schedules proposed by the deterministic approach
violate the constraints on the maximal temperature and/or
minimal lifetime when evaluated considering process variation.
The more complex the problem becomes, the higher values the
failure rate attains: with 16 and 32 processing elements (320
and 640 tasks, respectively), all deterministic solutions violate
the imposed constraints. Moreover, the difference between the
acceptable one percent of burn/wear (ρburn = ρwear = 0.01)
and the actual probability of burn/wear was found to be as
high as 80% in some cases, which is unacceptable.

In addition, we inspected those few deterministic solutions
that had passed the probabilistic reevaluation and observed that
the reported reduction of the energy consumption and maximal
temperature as well as the reported increase of the lifetime were
overoptimistic. More precisely, the predictions produced by
the deterministic optimization, which ignores variations, were
compared with the expected values obtained when process
variation was taken into account. The comparison showed that
the expected energy and temperature were up to 5% higher
while the expected lifetime was up to 20% shorter than the
ones estimated by the deterministic approach. This aspect of
the deterministic optimization can mislead the designer.

Consequently, when studying those aspects of electronic
systems that are concerned with power, temperature, and
reliability, the ignorance of the deteriorating effect of process
variation can severely compromise the associated design
decisions making them less profitable in the best case and
dangerous, harmful in the worst scenario.

Let us now comment on the optimization time shown in
Table III. It can be seen that the prototype of the proposed
framework takes from about one minute to six hours (uti-
lizing 16 CPUs) in order to perform optimization, and the
deterministic optimization is approximately 2–40 times faster.
However, the price to pay when relying on the deterministic
approach is considerably high as we discussed in the previous
paragraphs. It can be summarized as “blind guessing with highly
unfavorable odds of succeeding.” Consequently, we consider
the computational time of our framework to be reasonable and
affordable, especially in an industrial setting.

Lastly, we performed experiments also to investigate the
impact of the lifetime constraint in (28) on the reduction
of the expected energy consumption. To this end, we ran
our probabilistic optimization (all 50 problems) without the
constraint in (28) and compared the corresponding results with
those obtained considering the lifetime constraint. We observed

that the expected energy consumption was higher when (28)
was taken into account, but the difference vanishes when the
complexity of the problems increases. On average, the cost
of (28) was below 5% of the expected energy consumption.
Without (28), however, no (probabilistic) guarantees on the
lifetime of the considered systems can be given.

XI. CONCLUSION

We have presented a number of techniques for uncertainty
quantification of electronic systems subjected to process varia-
tion. First, we developed a process-variation-aware approach to
DSS temperature analysis. Second, we proposed a framework
for reliability analysis that seamlessly takes into account the
variability of process parameters and, in particular, the effect
of process variation on temperature. We drew a comparison
with MC sampling, which confirmed the efficiency of our
solutions in terms of both accuracy and speed. The low
computational demand of our techniques implies that they
are readily applicable for practical instantiations inside design-
space exploration loops, which was also demonstrated in this
work considering an energy-driven probabilistic optimization
procedure under reliability-related constraints. We have shown
that temperature is to be treaded as a stochastic quantity in
order to pursue robustness of electronic system designs.
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APPENDIX

A. Temperature Solution
The technique used to solve the thermal system in (17)

belongs to the family of exponential integrators [22], which
are known to have good stability properties. More specifically,
we rely on a one-step member from that family. In what follows,
for compactness, we shall omit u.

Multiplying both sides of (17a) by e−At and noting that

e−At
ds(t)

dt
=
d e−Ats(t)

dt
+ e−AtAs(t),

we obtain the exact solution of (17a) over a time interval
∆t = tk − tk−1 given as follows:

s(tk) = eA∆ts(tk−1)+

∫ ∆t

0

eA(∆t−t)Bp(tk+t, s(tk+t))dt.

The integral on the right-hand side is approximated by assuming
that, within ∆t, the power dissipation does not change and is
equal to the power dissipation at tk. Thus, we have

s(tk) = eA∆ts(tk−1) + A−1(eA∆t − I)B p(tk−1, s(tk−1)),

which leads to the recurrence in (18).

B. Probability Transformation
The uncertain parameters u should be preprocessed in order

to extract a set of mutually independent random variables ξ.
This task is accomplished by virtue of the Nataf transformation.
Here we describe the algorithm in brief and refer the interested
reader to [17] for additional details.
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The transformation has two steps. First, u ∈ Rnunp are
morphed into correlated standard Gaussian variables ζ ∈ Rnunp

using the knowledge of the marginal distributions and correla-
tion matrix of u. Second, the obtained variables are mapped
into independent standard Gaussian variables ξ ∈ Rnunp using
the eigendecomposition as we show next. Let Kζ be the
correlation matrix of ζ. Since any correlation matrix is real and
symmetric, Kζ admits the eigendecomposition: Kζ = VΛVT

(see Sec. VII-B for the notation). ζ can then be represented as
ζ = VΛ

1
2 ξ where the vector ξ is standardized and uncorrelated,

which is also independent as ξ is Gaussian.

C. Model Order Reduction

In this section, we discuss the model order reduction
performed by T in Sec. VI-B. This reduction is based on the
eigendecomposition undertaken in Appendix B. The intuition
is that, due to the correlations possessed by u ∈ Rnunp , it
can be recovered from a small subset with only nξ variables
where nξ � nunp. Such redundancies can be revealed by
analyzing the eigenvalues λ = (λi)

nunp
i=1 located on the diagonal

of Λ, which are all nonnegative. Without loss of generality,
we let λi ≥ λj whenever i < j and assume ‖λ‖1 = 1.
Then we can identify the smallest nξ such that

∑nξ
i=1 λi is

greater than a certain threshold chosen from the interval (0, 1].
When this threshold is sufficiently high (close to one), the
rest of the eigenvalues and the corresponding eigenvectors
can be dropped as being insignificant, reducing the number of
stochastic dimensions to nξ. With a slight abuse of notation,
we let ξ be the result of the reduction.

D. Spectral Decomposition

Let H ⊂ L2(Ω,F ,P) be the Gaussian Hilbert space [15]
spanned by the random variables {ξi}

nξ
i=1 contained in ξ as

defined in (4). Since these variables are independent and
standard, they form an orthonormal basis in H , and the
dimensionality of H is nξ. Let ΨlC (H) be the space of nξ-
variate polynomials over H such that the total order of each
polynomial is less or equal to lC . ΨlC (H) can be constructed
as a span of nξ-variate Hermite polynomials [3], [16]:

ΨlC (H) = span ({ψα(ζ) : α ∈ A (lC) , ζ ∈ Hnξ})
where α = (αi) ∈ Nnξ0 is a multi-index,

A (lC) =

{
α : ‖α‖1 :=

nξ∑
i=1

|αi| ≤ lC

}
, (30)

ψα(ζ) =

nξ∏
i=1

ψαi(ζi), and

ψαi is a one-dimensional Hermite polynomial of order αi,
which is assumed to be normalized for convenience. Define
H0 := Ψ0(H) (the space of constants) and, for i ≥ 1,

Hi := Ψi(H) ∩ Ψi−1(H)⊥.

The spaces Hi, i ≥ 0, are mutually orthogonal, closed
subspaces of L2(Ω,F ,P). Since our scope of interest is
restricted to functions of ξ (via (3)), F is assumed to be

generated by {ξi}
nξ
i=1. Then, by the Cameron–Martin theorem,

L2(Ω,F ,P) =

∞⊕
i=0

Hi,

which is known as the Wiener chaos decomposition. Thus,
any ϑ ∈ L2(Ω,F ,P) admits an expansion with respect to the
polynomial basis. Define the associated linear operator by

CnξlC [ϑ] :=
∑

α∈A(lC)

〈ϑ, ψα〉ψα(ξ). (31)

Remark 2 is relevant for the present discussion. The spectral
decomposition in (31) converges in mean square to ϑ as lC →
∞. We shall refer to lC as the level of the chaotic expansion.
The cardinality of A (lC) in (30) is

#A (lC) :=

(
lC + nξ
nξ

)
.

Denote by dFξ the probability measure induced on Rnξ by ξ,
which is standard Gaussian given by

dFξ(x) = (2π)−nξ/2 e−‖x‖
2
2/2 dx. (32)

The inner product in (31) projects ϑ onto the corresponding
polynomial subspaces and is given by

ϑ̂α = 〈ϑ, ψα〉 =

∫
Rnξ

ϑ(T[x])ψα(x) dFξ(x). (33)

Recall that ϑ is a function of u, and T, defined in (3), bridges u
with ξ. Lastly, we note that {ψα : α ∈ Nnξ0 } are orthonormal
with respect to dFξ: 〈ψα, ψβ〉 = δαβ where α = (αi) and
β = (βi) are two arbitrary multi-indices, δαβ :=

∏
i δαiβi ,

and δij is the Kronecker delta.

E. Numerical Integration

As shown in (33), each ϑ̂α is an nξ-dimensional integral,
which, in general, should be computed numerically. This task
is accomplished by virtue of an adequate nξ-dimensional
quadrature, which is essentially a set of nξ-dimensional points
accompanied by scalar weights. Since we are interested in
integration with respect to the standard Gaussian measure over
Rnξ (see (32)), we shall rely on the Gauss–Hermite family
of quadrature rules [3], which is a subset of a broader family
known as Gaussian quadratures. The construction of high-
dimensional rules should be undertaken with a great care
as, without special treatments, the number of points grows
exponentially. In what follows, we address this crucial aspect.

Let f : Rnξ → R and define the quadrature-based
approximation of the integral of f by the linear functional

QnξlQ [f ] :=

nQ∑
i=1

f(xi)wi

where {(xi ∈ Rnξ , wi ∈ R)}nQ
i=1 are the points and weights

of the chosen quadrature. Remark 2 applies in this context
as well. The subscript lQ ∈ N0 denotes the level of the rule,
which is its index in the corresponding family of rules with
increasing precision. The precision refers to the maximal total
order of polynomials that the quadrature integrates exactly. The
number of points nQ can be deduced from the pair (nξ, lQ),
which we shall occasionally emphasize by writing nQ(nξ, lQ).
For the Gauss–Hermite quadrature rules in one dimension, we
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have that nQ = lQ + 1 and the precision is 2nQ − 1 [19]
or, equivalently, 2lQ + 1, which is a remarkable property of
Gaussian quadratures.

The foundation of a multidimensional rule QnξlQ is a set
of one-dimensional counterparts {Q1

i }
lQ
i=0. A straightforward

construction is the tensor product of nξ copies of Q1
lQ

:

QnξlQ =

nξ⊗
i=1

Q1
lQ , (34)

which is referred to as the full-tensor product. In this case,
nQ(nξ, lQ) = nQ(1, lQ)nξ , i.e., the growth of the number of
points is exponential. Moreover, it can be shown that most of
the points obtained via this construction are an excess as the
full-tensor product does not take into account the fact that the
integrands under consideration are polynomials whose total
order is constrained according to a certain strategy.

An alternative construction is the Smolyak algorithm [3],
[16]. Intuitively, the algorithm combines {Q1

i }
lQ
i=0 such that

QnξlQ is tailored to be exact only for a specific polynomial
subspace. Define ∆0 := Q1

0 and ∆i := Q1
i −Q1

i−1 for i ≥ 1.
Then Smolyak’s approximating formula is

QnξlQ =
⊕

α∈A(lQ)

∆α1 ⊗ · · · ⊗∆αnξ
. (35)

In the original (isotropic) formulation of the Smolyak algorithm,
A (lQ) is the same as the one defined in (30); the resulting
sparse grid is exact for polynomials of total order 2lQ + 1
(analogous to the integration in one dimension). Note that,
although we use the same notation in (34) and (35), the two
constructions are generally different. (The latter reduces to the
former if A (lQ) is set to {α : maxi αi ≤ lQ}.) It can be seen
that the construction in (35) is a summation of cherry-picked
tensor products of one-dimensional quadrature rules. Equation
(35) is well suited for grasping the structure of the resulting
sparse grids; more implementation-oriented versions of the
Smolyak formula can be found in the cited literature.
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