
Linköping Studies in Science and Technology. Dissertations, No. 1887

System-Level Analysis and Design
under Uncertainty

Ivan Ukhov

Department of Computer and Information Science
Linköping University

SE-581 83 Linköping, Sweden

Linköping 2017

© 2017 Ivan Ukhov

ISBN 978-91-7685-426-6
ISSN 0345-7524
URL https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-140758

Printed by LiU-Tryck, Linköping 2017

To my parents,
Tatiana and Aleksandr

Abstract

One major problem for the designer of electronic systems is the presence of
uncertainty, which is due to phenomena such as process and workload varia-
tion. Very often, uncertainty is inherent and inevitable. If ignored, it can lead
to degradation of the quality of service in the best case and to severe faults or
burnt silicon in the worst case. Thus, it is crucial to analyze uncertainty and to
mitigate its damaging consequences by designing electronic systems in such a
way that uncertainty is effectively and efficiently taken into account.

We begin by considering techniques for deterministic system-level analysis
and design of certain aspects of electronic systems. These techniques do not
take uncertainty into account, but they serve as a solid foundation for those
that do. Our attention revolves primarily around power and temperature, as
they are of central importance for attaining robustness and energy efficiency.
We develop a novel approach to dynamic steady-state temperature analysis of
electronic systems and apply it in the context of reliability optimization.

We then proceed to develop techniques that address uncertainty. The first
technique is designed to quantify the variability in process parameters, which
is induced by process variation, across silicon wafers based on indirect and
potentially incomplete and noisy measurements. The second technique is de-
signed to study diverse system-level characteristics with respect to the vari-
ability originating from process variation. In particular, it allows for analyz-
ing transient temperature profiles as well as dynamic steady-state tempera-
ture profiles of electronic systems. This is illustrated by considering a problem
of design-space exploration with probabilistic constraints related to reliability.
The third technique that we develop is designed to efficiently tackle the case
of sources of uncertainty that are less regular than process variation, such as
workload variation. This technique is exemplified by analyzing the effect that
workload units with uncertain processing times have on the timing-, power-,
and temperature-related characteristics of the system under consideration.

We also address the issue of runtime management of electronic systems
that are subject to uncertainty. In this context, we perform an early investiga-
tion into the utility of advanced prediction techniques for the purpose of fine-
grained long-range forecasting of resource usage in large computer systems.

All the proposed techniques are assessed by extensive experimental eval-
uations, which demonstrate the superior performance of our approaches to
analysis and design of electronic systems compared to existing techniques.

The research presented in this thesis has been partially funded by the National
Computer Science Graduate School (cugs) in Sweden.

v

Sammanfattning

Ett stort problem för designern inom elektroniska system är förekomsten av
osäkerhet, som beror på sådana fenomen som variationer relaterade till till-
verkning och arbetsbelastning. Osäkerhet är imånga fall naturlig och oundvik-
lig och kan leda till försämring av servicekvaliteten i bästa fall och till allvarliga
fel eller bränd kisel i värsta fall. Därför är det viktigt att analysera osäkerhet
och att mildra dess skadliga följder genom att designa elektroniska system på
sådant sätt att de effektivt och ändamålsenligt tar hänsyn till osäkerhet.

Vi börjar med att överväga tekniker för deterministisk systemnivåanalys
och systemnivådesign av elektroniska system. Dessa tekniker tar inte hänsyn
till osäkerhet; de fungerar dock som en solid grund för de tekniker som gör det.
Vi fokuserar främst på faktorer somkraft och temperatur eftersomde är av cen-
tral betydelse för att uppnå robusthet och energieffektivitet. Vi utvecklar ett
nytt tillvägagångssätt för dynamisk stabiliserad temperaturanalys av elektro-
niska system och tillämpar det inom ramen för tillförlitlighetsoptimering.

Vi fortsätter sedan med att utveckla ett antal tekniker som tar hänsyn till
osäkerhet i elektroniska system. Den första tekniken är utformad för att kvan-
tifiera föränderligheten hos processparametrar, som framkallas av processva-
riation, över kiselplattor baserat på indirekta och potentiellt ofullständiga och
bullrigamätningar. Den andra tekniken går ut på att studera olika systemnivå-
egenskapermed avseende på variabiliteten somhärrör från processvariation. I
synnerhet tillåter den analys av övergående temperaturprofiler samt dynamis-
ka stabiliserade temperaturprofiler hos elektroniska system. Detta illustreras
genom att överväga problemet med utforskning av ett designutrymme med
probabilistiska begränsningar relaterade till tillförlitlighet. Den tredje tekni-
ken som vi utvecklar är utformad för att effektivt ta itumed osäkerhetsfaktorer
som är mindre regelbundna än processvariation, som till exempel variationer
i arbetsbelastning. Denna teknik exemplifieras genom att analysera den effekt
som arbetsbelastningsenheter med osäkra behandlingstider har på det aktuel-
la systemets tids-, kraft- och temperaturrelaterade egenskaper.

Vi tar även hänsyn till frågan om körtidshantering av elektroniska system
under osäkerhet. I det här sammanhanget utför vi en tidig undersökning av
användbarheten av avancerade prediktiva tekniker för att anskaffa en förfinad
prognos för långsiktig användning av resurser i stora datorsystem.

Alla föreslagna tekniker bedöms genom omfattande experimentella utvär-
deringar som påvisar den överlägsna prestationsförmågan av vårametoder för
analys och design av elektroniska system med avseende på befintliga tekniker.

vii

Acknowledgments

I would like to expressmy enormous gratitude to Professor Zebo Peng and Pro-
fessor Petru Eles for their exhaustive and discerning supervision of my gradu-
ate studies at Linköping University. I cannot possibly imagine a better work-
ing environment than the one that Zebo and Petru have carefully created and
maintained over all these years in our Embedded Systems Laboratory.

I am extremely grateful to Professor Diana Marculescu for her caring and
thorough supervision during my visit to Carnegie Mellon University. Being
part of a different research group in a different country for several months was
an invaluable professional experience for me, and Diana made sure that this
experience was also impeccably smooth and indispensably delightful.

I would like to thank Professor Mattias Villani for his valuable advice and
constant readiness to lend a natural-born Bayesian’s helping hand to those of
us who occasionally or always find ourselves hopelessly lost in statistics.

I am thankful to Anne Moe for attentively shepherding graduate students
toward doctoral hats, which must be akin in difficulty to herding cats. I am
also thankful to Marie Johansson for her kind help with every matter.

Over the course of my doctoral education, I have had the pleasure to meet
many other amazing people who have been instrumental in making it possible
for me to reach the finish line of this challenging and gratifying journey.

I thank Sergiu Rafiliu for welcomingme at the train station onmy very first
day in Linköping. I thankMin Bao for helping me take my very first steps as a
researcher. I thank Soheil Samii for being an excellent example of an accom-
plished senior graduate student, which I aspired to become myself one day.

I am grateful to Breeta SenGupta for sharing my passion for drawing and
photography. I am grateful to Unmesh Bordoloi and Ahmed Rezine for being
supportive and reassuring, which I really needed at times. I am also grateful
to Bogdan Tanasa for many engaging discussions at the whiteboard.

ix

I am thankful toMaria Vasilevskaya for her constantly positive attitude and
contagious optimism. I amalso thankful to LisaMalmberg, ErikHansson, and
Ulf Kargén for patiently answering my myriad of questions about Swedish.

I am particularly grateful to Flavia Horga, Adrian Horga, Sarah Alsaadi,
Adrian Lifa, Mikaela Holmbäck, ArianMaghazeh, and Antonia Arvanitaki for
our numerous merry gatherings both on and off the university’s campus.

Lastly and most importantly, I cannot thank my parents, Tatiana Ukhova
and Aleksandr Ukhov, enough. Their unconditional and inexhaustible care
and support have always been of paramount significance to me.

Ivan Ukhov
Linköping, November 2017

x

Table of Contents

Abstract v

Acknowledgments ix

Table of Contents xi

List of Algorithms xv

List of Figures xvii

List of Tables xix

1 Introduction 1
1.1 Uncertainty . 1

1.1.1 Process Variation . 2
1.1.2 Workload Variation . 2
1.1.3 Aging Variation . 2

1.2 Motivation . 3
1.3 Objective . 3
1.4 Contribution . 4
1.5 Previous Work . 4
1.6 Thesis Overview . 5
1.7 Publication Overview . 7

2 Background 9
2.1 SystemModel . 9
2.2 Power Model . 10
2.3 Temperature Model . 11

xi

2.4 Reliability Model . 12
2.4.1 Periodic Thermal Stress 13
2.4.2 Thermal-Cycling Fatigue 14

3 Analysis and Design with Certainty 17
3.1 Introduction . 17
3.2 Transient Analysis . 18

3.2.1 Previous Work . 18
3.2.2 Proposed Solution . 19

3.3 Static Steady-State Analysis . 21
3.4 Dynamic Steady-State Analysis 21

3.4.1 Previous Work . 22
3.4.2 Proposed Solution . 24
3.4.3 Experimental Results . 27

3.5 Power-Temperature Interdependence 29
3.6 Reliability Optimization . 31

3.6.1 Motivational Example 31
3.6.2 Problem Formulation . 32
3.6.3 Proposed Solution . 33
3.6.4 Experimental Results . 34

3.7 Conclusion . 37

4 Analysis of Process Uncertainty 39
4.1 Introduction . 39
4.2 Motivational Example . 40
4.3 Problem Formulation . 42
4.4 Previous Work . 43
4.5 Proposed Solution . 43

4.5.1 Data Model . 45
4.5.2 Statistical Model . 45
4.5.3 Optimization Procedure 49
4.5.4 Sampling Procedure . 49
4.5.5 Post-Processing . 50

4.6 Experimental Results . 50
4.6.1 Number of Measurement Sites 52
4.6.2 Number of Measurement Points 53
4.6.3 Number of Data Instances 53
4.6.4 Deviation of Measurement Noise 54
4.6.5 Sequential and Parallel Sampling 55

4.7 Conclusion . 55

5 Analysis and Design under Process Uncertainty 57
5.1 Introduction . 57
5.2 Motivational Example . 57

xii

5.3 Problem Formulation . 58
5.4 Previous Work . 59
5.5 Proposed Solution . 62
5.6 Uncertainty Analysis . 63

5.6.1 Problem Formulation . 63
5.6.2 Probability Transformation 65
5.6.3 Surrogate Construction 65
5.6.4 Post-Processing . 68

5.7 Transient Analysis . 69
5.7.1 Problem Formulation . 70
5.7.2 Surrogate Construction 71

5.8 Transient Analysis: Illustrative Application 73
5.8.1 Problem Formulation . 73
5.8.2 Probability Transformation 75
5.8.3 Surrogate Construction 76
5.8.4 Post-Processing . 77

5.9 Transient Analysis: Experimental Results 78
5.9.1 Approximation Accuracy 79
5.9.2 Computational Speed . 82

5.10 Dynamic Steady-State Analysis 85
5.10.1 Problem Formulation . 85
5.10.2 Surrogate Construction 86

5.11 Reliability Analysis . 86
5.11.1 Problem Formulation . 86
5.11.2 Surrogate Construction 87

5.12 Energy Optimization . 88
5.12.1 Problem Formulation . 88
5.12.2 Post-Processing . 89

5.13 Energy Optimization: Illustrative Application 90
5.13.1 Problem Formulation . 90
5.13.2 Probability Transformation 92
5.13.3 Surrogate Construction 92

5.14 Energy Optimization: Experimental Results 93
5.14.1 Approximation Accuracy 93
5.14.2 Computational Speed . 94
5.14.3 Optimization Effectiveness 95

5.15 Conclusion . 98

6 Analysis underWorkload Uncertainty 99
6.1 Introduction . 99
6.2 Motivational Example . 100
6.3 Problem Formulation . 101
6.4 Previous Work . 102
6.5 Proposed Solution . 103

xiii

6.6 Probability Transformation . 104
6.7 Surrogate Construction . 104

6.7.1 Collocation Nodes . 105
6.7.2 Basis Functions . 106
6.7.3 Hybrid Adaptivity . 108
6.7.4 Implementation . 110

6.8 Post-Processing . 112
6.9 Illustrative Application . 113

6.9.1 Problem Formulation . 113
6.9.2 Probability Transformation 116
6.9.3 Post-Processing . 116

6.10 Experimental Results . 117
6.10.1 Approximation Accuracy 118
6.10.2 Real-Life Deployment 122

6.11 Conclusion . 123

7 Management underWorkload Uncertainty 125
7.1 Introduction . 125
7.2 Problem Formulation . 127
7.3 Previous Work . 127
7.4 Proposed Solution . 129

7.4.1 Data Pipeline . 129
7.4.2 Predictive Model . 131
7.4.3 Learning Pipeline . 132

7.5 Experimental Results . 135
7.5.1 Data Pipeline . 135
7.5.2 Learning Pipeline . 135

7.6 Conclusion . 138

8 Conclusion 139
8.1 Present Work . 139
8.2 Future Work . 140

A Appendix 143
A.1 Linear Algebra . 143
A.2 Probability Theory . 143
A.3 Bayesian Statistics . 145
A.4 Probability Transformation . 146
A.5 Numerical Integration . 148
A.6 Hierarchical Interpolation . 151
A.7 Polynomial Chaos . 154

Bibliography 157

xiv

List of Algorithms

3.1 Calculation of a dynamic steady-state temperature profile 27
3.2 Calculation of dynamic steady-state power and temperature pro-

files considering the power-temperature interdependence 30

5.1 Construction of a polynomial chaos expansion 67
5.2 Calculation of dynamic steady-state power and temperature pro-

files given an outcome of the uncertain parameters 85

6.1 Construction of an adaptive hierarchical interpolant 111
6.2 Evaluation of an adaptive hierarchical interpolant 112

xv

List of Figures

2.1 Example of a thermal rc circuit for a dual-core platform 11

3.1 Accuracy of the iterative transient approximation to dynamic
steady-state temperature analysis 22

3.2 Example of the static steady-state approximation to dynamic
steady-state temperature analysis 23

3.3 Accuracy of the static steady-state approximation to dynamic
steady-state temperature analysis 24

3.4 Computational speed of different solutions to dynamic steady-state
analysis with respect to the number of time steps 28

3.5 Computational speed of different solutions to dynamic steady-state
analysis with respect to the number of processing elements 29

3.6 Task graph of an application along with the execution times of the
tasks with respect to two processing elements 32

3.7 Alternative schedules, including mappings, of the application and
the corresponding dynamic steady-state temperature profiles . . . 32

3.8 Pareto front delivered by the multiobjective optimization 37

4.1 Example of a true distribution (left) and an inferred distribution
(right) of the effective channel length across a silicon wafer 40

4.2 Locations of the measured dies (left) and the defective dies (right)
as well as the inferred probability of defect (right) 41

4.3 Overview of the proposed solution for characterizing process vari-
ation across silicon wafers . 44

4.4 Statistical model of the proposed solution for characterizing pro-
cess variation across silicon wafers 46

xvii

5.1 Example of temperature fluctuations due to process variation . . . 58
5.2 Overview of the proposed solution for analyzing electronic systems

under process variation . 64
5.3 Beta distribution fitted to the standard Gaussian distribution . . . 73
5.4 Example of a dynamic power profile of a dual-core platform 77
5.5 Expectation (solid) and one standard deviation above it (dashed)

of a stochastic temperature profile of a dual-core platform 78
5.6 Example of probability density functions computed using the pro-

posed solution (solid) and Monte Carlo sampling (dashed) 81

6.1 Example of the polynomial chaos decomposition and adaptive hi-
erarchical interpolation applied to a nonsmooth quantity 100

6.2 First three levels of the one-dimensional open Newton–Cotes grid
with new nodes (solid) and inherited nodes (hollow) 106

6.3 First three levels of the one-dimensional piecewise linear basis . . 107
6.4 Proposed solution applied to the end-to-end delay of an application

in which two out of four tasks have uncertain execution times . . . 115
6.5 Example of probability density functions computed using the pro-

posed solution and direct sampling 117
6.6 Accuracy of the proposed solution (blue) and direct sampling

(orange) in the case of the end-to-end delay 119
6.7 Accuracy of the proposed solution (blue) and direct sampling

(orange) in the case of the total energy consumption 120
6.8 Accuracy of the proposed solution (blue) and direct sampling

(orange) in the case of the maximum temperature 121

7.1 Example of predicting the cpu usage of a particular task up to four
steps ahead at three different moments in time 126

7.2 Overviewof the proposed solution, including the data pipeline (top)
and the learning pipeline (bottom) 129

7.3 Schematic representation of the predictive model 131
7.4 Feeding a resource-usage profile into the predictive model 133
7.5 Accuracy of the proposed and reference solutions for predicting re-

source usage for individual tasks multiple steps ahead 138

xviii

List of Tables

3.1 Results of the optimization procedure with respect to the number
of processing elements, including the computational speed 35

3.2 Results of the optimization procedure with respect to the number
of tasks, including the computational speed 35

3.3 Results of the optimization procedure with respect to the solution
to dynamic steady-state temperature analysis 36

4.1 Computational speed and accuracy of the proposed solution with
respect to the number of measurement sites 52

4.2 Computational speed and accuracy of the proposed solution with
respect to the number of measurement points 53

4.3 Computational speed and accuracy of the proposed solution with
respect to the number of data instances 54

4.4 Computational speed and accuracy of the proposed solution with
respect to the standard deviation of noise 54

5.1 Accuracy of the proposed solution andMonte Carlo samplingwhen
the Ornstein–Uhlenbeck kernel dominates 80

5.2 Accuracy of the proposed solution andMonte Carlo samplingwhen
the correlation kernels are balanced 80

5.3 Accuracy of the proposed solution andMonte Carlo samplingwhen
the squared-exponential kernel dominates 80

5.4 Computational speed of the proposed solution and Monte Carlo
sampling with respect to the number of processing elements . . . 83

5.5 Computational speed of the proposed solution and Monte Carlo
sampling with respect to the number of time steps 83

xix

5.6 Accuracy of the proposed solution with respect to the level of poly-
nomial chaos expansions . 94

5.7 Computational speed of the proposed solution with respect to the
number of processing elements . 95

5.8 Computational speed of the probabilistic and deterministic opti-
mization procedures as well as the failure rate of the latter 96

7.1 Accuracy and memory requirements of the top 10 and bottom 10
configurations of the hyperparameters of the predictive model . . 137

xx

1

Introduction

Electronic systems are omnipresent and omniscient. They continue to invade
and conquer new application areas, penetrating deep into everyday life and be-
coming unsettlingly indispensable for the tasks entrusted to them. However,
there is a great deal of uncertainty associated with electronic systems, and as
they continue to flourish, the impact of this uncertainty inevitably becomes
more prominent and entails more severe consequences, requiring appropriate
treatment. It is then readily understandable that analysis and design of elec-
tronic systems are intensely difficult and vastly far-reaching endeavors.

Analysis and design of electronic systems with an emphasis on uncertainty
is the topic of this thesis. In this section, we give an introduction to our work
and, in particular, summarize our motivations, objectives, and contributions.
However, in order to give a clear presentation, we first elaborate on what is
meant by the word uncertainty in the context of the thesis.

1.1 Uncertainty

In this thesis, we take the designer’s standpoint. Specifically, a particular as-
pect of the electronic system under consideration is said to be uncertain if this
aspect is unknown to the designer of the system at design time.

The typical scenario is that the designer is interested in studying a certain
quantity—referred to as the quantity of interest—where complete knowledge
of this quantity would be highly beneficial but cannot be obtained, since the
quantity per se is uncertain to the designer, or because it depends on parame-
ters that are uncertain to the designer. We remain agnostic on the underlying
reason behind this state of uncertainty: it can be aleatory as well as epistemic.

1

1. Introduction

Uncertainty in electronic systems can originate from different phenomena,
and, in many cases, it is inherent and inevitable (from the designer’s stand-
point). Let us consider three examples that are of relevance to the thesis.

1.1.1 Process Variation

A prominent example of uncertainty is the one that stems from process vari-
ation [12, 103]. In this case, the source of uncertainty is the fabrication pro-
cess. Specifically, the process parameters of fabricated nanoscale devices de-
viate from their nominal values, since the contemporary fabrication process
cannot be controlled precisely down to the level of individual atoms.

The aforementioned transistor-level variability propagates to such crucial
system-level characteristics of an electronic system as power consumption and
heat dissipation, thereby making them uncertain to the designer of this sys-
tem. The propagation is due to process variation affecting the key parameters
of a technological process, such as the effective channel length and gate oxide
thickness. As a result, the same workload applied to two seemingly identical
dies can lead to two drastically different power profiles and consequently to
two drastically different temperature profiles, since power consumption and
heat dissipation depend on the aforementioned quantities, which will be dis-
cussed further in Section 2.2. This concern is especially exigent due to the
power-temperature interplay—which is also covered in Section 2.2 as well as
in Section 3.5—whose magnitude depends on process parameters.

1.1.2 Workload Variation

Another salient example of uncertainty is the one that emerges fromworkload
variation. In this case, the source of uncertainty is the actual work that elec-
tronic systems are instructed to perform. To elaborate, from one activation to
another, the same piece of deterministic software can exhibit drastically dif-
ferent behaviors depending on the environment and input data. Neither the
environment nor the input data that the system under consideration will be
exposed to at runtime is exhaustively known at early development stages.

1.1.3 Aging Variation

Yet another example of uncertainty is the one that originates from aging varia-
tion. In this case, the source of uncertainty is natural or accelerated wear [37],
which leads to the degradation over time of the performance of electrical cir-
cuits. This degradation can cause terminal faults and, therefore, can abruptly
end the life of the system at hand. Since the degradation is a nonuniform and
intricate process, the lifetime of the system is uncertain to the designer.

There is one factor that is worth highlighting in this context: tempera-
ture. Temperature has a profound impact on the lifetime of electronic systems,

2

1.2. Motivation

which is well known and well studied. The failure mechanisms that are com-
monly considered—such as electromigration, time-dependent dielectric break-
down, and thermal cycling—are directly driven by temperature. Additionally,
there is a connection between process variation and aging variation, which is
that the former intensifies the latter via temperature.

Having introduced and exemplified uncertainty in electronic systems, we
are ready to consolidate our motivation and solidify our objective.

1.2 Motivation

In the context of current and future technologies, it is both inefficient and un-
reliable to rely exclusively on uncertainty-unaware techniques when develop-
ing electronic systems. Regardless of its origin, uncertainty causes certain as-
pects of the system under consideration to be nondeterministic to the designer.
Therefore, if the presence of uncertainty is disregarded, it can lead to degra-
dation of the quality of service in the best case and to severe faults or burnt
silicon in the worst case. Under these circumstances, it is crucial to analyze
and quantify uncertainty in electronic systems and to mitigate its deleterious
implications by designing electronic systems in such a way that uncertainty is
taken into consideration in an effective and efficient manner.

Even in the deterministic scenario, analysis and design of electronic sys-
tems are difficult undertakings. However, uncertainty exacerbates the situa-
tion even further, requiring adequate techniques for analysis and design that
allow for uncertainty. Versatile uncertainty-aware tools are meager at best,
and in the case of certain problems, they are non-existent. However, such tech-
niques are a must; they are an indispensable asset of design workflows that
strive to provide guarantees on efficiency and robustness for their products.

1.3 Objective

Our goal is to assist the designer of electronic systems by providing effective
and efficient system-level tools for analysis and design under uncertainty. To
this end, we are to develop techniques for quantifying and mitigating the vari-
ability that originates from the fabrication process, workload, and aging.

In particular, we intend to develop solutions that are applicable to diverse
practical problems and that are flexible and straightforward to use. In addition,
we are interested in calculating probability distributions—which are exhaus-
tive characterizations—rather than, for instance, corner cases, since designing
for the worst case often leads to a conservative and overdesigned system.

3

1. Introduction

1.4 Contribution

Our work has made the following major contributions:

• Wehave proposed a fast and accurate approach to deterministic dynamic
steady-state temperature analysis and have improved deterministic tran-
sient temperature analysis. Leveraging our efficient approach, we have
developed a procedure for reliability optimization targeted at reducing
thermal-cycling fatigue and hence at alleviating aging uncertainty.

• We have developed a versatile statistical framework for analyzing the
variability in process parameters across silicon wafers that is induced by
the fabrication process. The key feature of our approach is that it uses
indirect measurements, which streamlines its usage and allows for a re-
duction in the costs associated with the production process.

• We have developed a versatile probabilistic framework for analyzing
system-level quantities that are affected by process variation. Using our
technique, wehave enhanced reliability analysis and optimization of elec-
tronic systems by accounting for process uncertainty in reliability mod-
els, which has also improved the treatment of aging uncertainty.

• We have also developed a versatile probabilistic framework for analyz-
ing system-level quantities affected by workload variation, which tends
to engender a less regular variability than the one that stems from the
fabrication process and thus necessitates a different technique.

• We have performed an early yet informative investigation into the utility
of the latest advancements in machine learning for mitigating workload
uncertainty at runtime in the context of resource management. Specif-
ically, we have applied advanced prediction techniques to fine-grained
long-range forecasting of resource usage in large computer systems.

All the proposed solutions have been assessed by extensive experiments,
which have demonstrated the superior performance of our approaches to anal-
ysis and design of electronic systems compared to existing techniques.

1.5 PreviousWork

Since the appearance of the first digital computers in the 1940s, Monte Carlo
(mc) sampling remains one of the most well-known and widely used methods
for analyzing stochastic systems. With this technique, the system at hand is
treated as an opaque object, and one only has to evaluate this object a number
of times in order to start to draw conclusions about the system’s behavior. This
straightforwardness of application is at the heart of the technique’s popularity,
but there are two other reasons: the independence of the number of stochastic

4

1.6. Thesis Overview

dimensions and the law of large numbers [35], which states that the quantities
estimated using mc sampling asymptotically approach the true values.

Themajor problemwith sampling-basedmethods, however, is in sampling
per se: one has to obtain a sufficiently large number of readings of the quantity
of interest in order to accurately estimate the necessary statistics about this
quantity, and the number of required samples can be considerable [33]. In
the case of mc sampling, for instance, the error can be halved by quadrupling
the number of sample points. In other words, an additional decimal point
of accuracy requires a hundred times more samples. When the subject of the
analysis is computationally expensive—which is arguably the case with all non-
trivial quantities of interest, as they typically involve an evaluation of thewhole
system—sampling methods are rendered slow and often unfeasible.

There are sampling techniques that have better convergence rates than
that of classical mc sampling. Examples of such techniques include quasi-mc
sampling and Latin hypercube sampling [2, 57]. However, these convergence
rates are still relatively low, and the corresponding techniques often have ad-
ditional restrictions, which limit their applicability in practice [120].

In order to circumvent the high computational costs associated with sam-
pling methods and to address other scenarios, a number of alternative tech-
niques have been developed for uncertainty-aware analysis and design of elec-
tronic systems. Process variation has been the topic of many lines of research;
see, for instance, [6, 7, 11, 58, 69, 117]. Similarly, workload uncertainty has
not been deprived of attention; see, for instance, [32, 88, 96, 98, 105, 124].
Aging uncertainty has also been studied extensively in the literature; see, for
instance, [24, 28, 39, 50, 61, 83]. However, certain important problems have
not been addressed yet, and in the case of the ones that have been considered,
the proposed solutions are often restricted in use, which is due in part to the
unrealistic assumptions that these solutions make. The aforementioned con-
cerns will be discussed in detail in the relevant parts of the thesis.

1.6 Thesis Overview

The following is a bird’s eye view of the remaining chapters of the thesis.
In Chapter 2, we introduce a number of commonly usedmodels that consti-

tute a starting point for the developments presented in this thesis. Specifically,
we elaborate on a general systemmodel, a temperature-aware power model, a
temperature model, and a temperature-aware reliability model.

In Chapter 3, we consider techniques for deterministic system-level anal-
ysis of electronic systems. These techniques do not take uncertainty into ac-
count; however, they serve as a solid foundation for those that do. Our atten-
tion revolves primarily around power and temperature, since these two factors
are of central importance for attaining robustness and energy efficiency. We
develop a novel approach to dynamic steady-state temperature analysis of elec-

5

1. Introduction

tronic systems and apply it in the context of temperature-aware reliability op-
timization. Reliability optimization addresses aging uncertainty by definition;
however, this optimization falls within the scope of this chapter, since the ac-
companying reliability analysis treats temperature as a deterministic quantity,
which is suboptimal, and which we address in the subsequent chapters.

In Chapter 4, we present our first technique that is targeted at uncertainty.
We develop a statistical approach to analyzing process-variation-induced fluc-
tuations in process parameters across silicon wafers by means of indirect mea-
surements, which can also be incomplete and noisy. Examples of process pa-
rameters include the effective channel length and gate oxide thickness, and ex-
amples of indirect measurements include readings from thermal sensors. To
this end, we make use of a suite of tools borrowed from Bayesian statistics.

In Chapter 5, we continue working with process uncertainty and present a
technique that is applicable to studying diverse quantities with respect to pro-
cess variation. To this end, we leverage the theory of polynomial chaos expan-
sions. In particular, the proposed approach allows for analyzing transient and
dynamic steady-state power and temperature profiles of electronic systems as
well as such critical metrics of electronic systems as their peak temperatures
and energy consumption. All the above quantities can be analyzed fromaprob-
abilistic perspective, and the utility of this is illustrated by addressing a prob-
lem of design-space exploration with a set of probabilistic constraints that are
related to reliability. Unlike the reliability model utilized in Chapter 3, the
one presented in Chapter 5 takes process uncertainty into consideration and
consequently allows for a more adequate treatment of aging uncertainty.

In Chapter 6, we develop another system-level technique that is targeted at
uncertainty. The tool leverages adaptive hierarchical interpolation on sparse
grids and specializes in tackling workload variation and similar phenomena
whose manifestation is less regular than the smooth and well-behaved one of
process variation. The proposed technique is exemplified by quantifying the
effect that workload units with unknown processing times have on the timing-,
power-, and temperature-related characteristics of electronic systems.

In Chapter 7, we elaborate on runtime management of electronic systems
under workload variation. In this context, we perform an early investigation
into the applicability of advanced prediction techniques from machine learn-
ing to fine-grained long-range forecasting of resource usage in computer sys-
tems. Concretely, we study the applicability of recurrent neural networks.

In Chapter 8, we conclude the thesis by summarizing the main outcomes
of our work and elaborating on potential directions for further development.

The thesis also contains an appendix inwhichwe give an overviewof a num-
ber of concepts from such interconnected disciplines as linear algebra, proba-
bility theory, statistics, numerical integration, and interpolation. The theory
that is discussed in the appendix is utilized extensively throughout the thesis.

6

1.7. Publication Overview

1.7 Publication Overview

The content of the thesis is chiefly based on the following two conference pa-
pers and three journal articles (in the order used in the bibliography):

[110] I. Ukhov, M. Bao, P. Eles, and Z. Peng. “Steady-state dynamic temper-
ature analysis and reliability optimization for embedded multiproces-
sor systems.” In: Design Automation Conference. June 2012, pp. 197–
204. doi: 10.1145/2228360.2228399.

[111] I. Ukhov, P. Eles, and Z. Peng. “Probabilistic analysis of power and
temperature under process variation for electronic system design.” In:
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 33.6 (June 2014), pp. 931–944. doi: 10.1109/TCAD.
2014.2301672.

[112] I. Ukhov, P. Eles, and Z. Peng. “Temperature-centric reliability anal-
ysis and optimization of electronic systems under process variation.”
In: IEEE Transactions on Very Large Scale Integration Systems 23.11
(Nov. 2015), pp. 2417–2430. doi: 10.1109/TVLSI.2014.2371249.

[113] I. Ukhov, P. Eles, and Z. Peng. “Probabilistic analysis of electronic sys-
tems via adaptive hierarchical interpolation.” In: IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 36.11
(Nov. 2017), pp. 1883–1896. doi: 10.1109/TCAD.2017.2705117.

[116] I. Ukhov, M. Villani, P. Eles, and Z. Peng. “Statistical analysis of pro-
cess variation based on indirect measurements for electronic system
design.” In:Asia andSouthPacificDesignAutomationConference. Jan.
2014, pp. 436–442. doi: 10.1109/ASPDAC.2014.6742930.

In addition, the following two technical reports are used in the thesis:

[114] I. Ukhov, D. Marculescu, P. Eles, and Z. Peng. Fast synthesis of power
and temperature profiles for the development of data-driven resource
managers. Tech. rep. Linköping University, Sept. 2017.

[115] I.Ukhov,D.Marculescu, P. Eles, andZ. Peng.Fine-grained long-range
prediction of resource usage in computer clusters. Tech. rep. Linköping
University, Sept. 2017.

The publications listed above correspond to the chapters of the thesis as
follows. The work on uncertainty-unaware analysis and design presented in
[110] is covered in Chapter 3. The approach to characterization of process
variation developed in [116] is presented in Chapter 4. The techniques for
analysis and design under process variation proposed in [111] and [112] are
amalgamated in Chapter 5. The approach to analysis under workload varia-
tion introduced in [113] is elaborated on in Chapter 6. The work on workload

7

https://doi.org/10.1145/2228360.2228399
https://doi.org/10.1109/TCAD.2014.2301672
https://doi.org/10.1109/TCAD.2014.2301672
https://doi.org/10.1109/TVLSI.2014.2371249
https://doi.org/10.1109/TCAD.2017.2705117
https://doi.org/10.1109/ASPDAC.2014.6742930

1. Introduction

prediction for resource management given in [115] is described in Chapter 7,
which is also closely related to the data synthesis discussed in [114].

Lastly, the following two conference papers are not discussed in the thesis,
but they are closely related to the subject of Chapter 7:

[80] M. Niknafs, I. Ukhov, P. Eles, and Z. Peng. “Two-phase interarrival
time prediction for runtime resource management.” In: Euromicro
Conference on Digital System Design. Aug. 2017, pp. 524–528.

[81] M. Niknafs, I. Ukhov, P. Eles, and Z. Peng. “Workload prediction for
runtime resource management.” In: IEEENordic Circuits and System
Conference. Oct. 2017.

8

2
Background

In this chapter, we present a number of common system-level models that the
discussions in the subsequent chapters are based on.

2.1 SystemModel

Consider a generic electronic system that consists of np heterogeneous process-
ing elements and is equipped with a thermal package. A processing element
is any active component of the system, that is, any component that consumes
power and dissipates heat. The thermal package is the cooling equipment of
the system, including all passive components, that is, all components that do
not consume power. Processing elements can be identified at different levels
of granularity. For instance, a processing element could be a system on a chip,
a central processing unit, an arithmetic logic unit, cache memory, or a com-
munication bus. In the majority of the discussions in the thesis, processing
elements correspond to processing units or cores of a multiprocessor system.

The system is characterized by power profiles and temperature profiles,
which are discrete representations of the system’s power consumption and
heat dissipation, respectively. A power profile is an np × ns matrix

P =
(
p1, . . . ,pns

)
= (p(t1), . . . ,p(tns

)) ∈ Rnp×ns (2.1)

that contains ns samples {pi}
ns
i=1 ⊂ Rnp of the power consumption of np pro-

cessing elements taken at ns moments in time {ti}ns
i=1 with a sampling interval

∆t such that ti− ti−1 = ∆t for i = 2, . . . , ns. The number ns is called the num-
ber of steps. Similarly, a temperature profile is an np × ns matrix

Q =
(
q1, . . . , qns

)
= (q(t1), . . . , q(tns

)) ∈ Rnp×ns (2.2)

that captures the heat dissipation of the processing elements at a number of
equidistantmoments in time. Note that, even though the exact time frame and

9

2. Background

sampling interval of a power profile or a temperature profile are not included
in the corresponding notation, they are understood from the context.

2.2 PowerModel

The total power consumption of an electrical circuit consists of twomain com-
ponents: dynamic and static. Dynamic power is the result of the actual useful
work done by the circuit. By contract, static power is the result of various par-
asitic currents that cannot be entirely eliminated. The total power consumed
by np processing elements at time t is then written as

p(t) = pdyn(t) + pstat(t) (2.3)

where pdyn ∈ Rnp and pstat ∈ Rnp are the aforementioned dynamic and static
components of the total dissipation of power, respectively.

Dynamic power is modeled as follows:

pdyn = CfV 2

where C is the effective switched capacitance, f is the frequency, and V is the
supply voltage of the circuit. Static power is due chiefly to the leakage current
[12, 58, 59, 103], especially in modern cmos transistors. Leakage power and,
by extension, static power are modeled as follows [73]:

pstat = ngV I0

(
a q2e

αV +β
q + b eγV+δ

)
(2.4)

where q is the current temperature, V is the current supply voltage, I0 is the
average leakage current at the reference temperature and reference supply volt-
age, and ng is the number of gates in the circuit. The quantities a, b, α, β, γ,
and δ are technology-dependent constants, which can be found in [73]. There
are two aspects to note with respect to the equations given above.

First, the dynamic power component does not depend on the operating
temperature, whereas the static one does. The dependence of static (and hence
total) power on temperature is positive and strong: a higher level of heat dissi-
pation leads to a considerably higher level of power consumption. On the other
hand, as more power is consumed, more heat is dissipated. Consequently,
power and temperature constantly instigate each other; they are interdepen-
dent. This phenomenon cannot be neglected, since it leads to a higher level of
power (energy) consumption than expected and a higher level of heat dissipa-
tion than expected and, in the worst case, could cause a thermal runaway.

Second, even though it is not explicitly spelled out, static (and hence to-
tal) power depends on a number of process parameters, including the effective
channel length and gate oxide thickness. In particular, the effective channel
length has one of the strongest impacts on the leakage current [58].

10

2.3. Temperature Model

Silicon die

Thermal interface material

Heat spreader

Heat sink

Ambience

Thermal resistance

Thermal capacitance

Power source

Thermal node

Figure 2.1: Example of a thermal rc circuit for a dual-core platform

2.3 TemperatureModel

System-level temperature analysis of electronic systems is chiefly based on the
duality between the transfer of heat and the transfer of electric charge [66].
The core idea is to construct a thermal rc circuit for the system under consid-
eration [100]. Such a circuit is a collection of thermal nodes that are char-
acterized by thermal capacitances and connected with each other via thermal
resistances. The circuit is to capture the relevant physical structure and ther-
mal properties of the system and thereby model its thermal dynamics.

Similarly to the identification of processing elements described in Sec-
tion 2.1, a thermal rc circuit can be constructed at different levels of gran-
ularity, which, in this case, refers primarily to the number of thermal nodes
denoted by nn and their placement. It should be noted that the chosen level of
granularity impacts the accuracy of the subsequent temperature calculations.

In order to give a better sense of thermal rc circuits, Figure 2.1 depicts a
simplified example of such a circuit constructed for a dual-core chip that is
equipped with a thermal package composed of a thermal interface material,
heat spreader, and heat sink. Given np processing elements, each one is repre-
sented by one thermal node, and the thermal interfacematerial, heat spreader,
and heat sink are captured by np, np+4, and np+8 thermal nodes, respectively.
Consequently, nn = 4 × np + 12. In this particular example, since np = 2,
nn = 20. The construction principle described in this paragraph is the one
presented in [52], and it is also the one utilized throughout the thesis.

11

2. Background

Suppose now that an adequate thermal rc circuit has been constructed for
the electronic system under consideration. Regardless of the structure of the
circuit, the thermal dynamics of the circuit, and thus of the electronic system
itself, are governed by the following system of nn differential and np algebraic
equations, which is based on Fourier’s law [40]: C

ds̃(t)

dt
+Gs̃(t) = B̃p(t) (2.5a)

q(t) = B̃Ts̃(t) + qamb (2.5b)

where q ∈ Rnp , qamb ∈ Rnp , and p ∈ Rnp are the operating temperature,
ambient temperature, and power consumption of the processing elements, re-
spectively. Furthermore, s̃ ∈ Rnn represents the state of the thermal nodes,
andC ∈ Rnn×nn andG ∈ Rnn×nn are a diagonal matrix of the thermal capac-
itance and a symmetric positive definite matrix of the thermal conductance,
respectively. Lastly, B̃ ∈ Rnn×np is a mapping between the processing ele-
ments and the thermal nodes, which, without loss of generality, is assumed to
be a rectangular diagonal matrix whose diagonal elements are equal to unity.

In general, the differential part in Equation 2.5a is nonlinear due top, since
we do not make any assumptions about its structure; see also the discussion in
Section 2.2. Therefore, there is no closed-form solution to the system.

Lastly, let us note that temperature analysis of electronic systems is gener-
ally considered to be a computationally expensive operation. The long com-
putation times can be severely limiting, especially when the analysis is to be
performed many times for such purposes as design-space exploration. Thus,
there is always a need for development of more efficient techniques.

2.4 Reliability Model

In this section, we turn our attention to temperature-aware reliability analysis.
Let (Ω,F ,P) be a probability space (see Appendix A.2), and let L : Ω→ R

be a random variable that represents the lifetime of the system. The lifetime
is the time until the system experiences a fault after which it no longer meets
certain requirements. Also, let F (·|g) be the distribution function of L, which
gives the probability of failure before a certain moment in time, where g is a
vector of parameters. The expectation EL is called the mean time to failure
(mttf). Lastly, the complementary distribution function of L is

R(t|g) = 1− F (t|g),

which, in the context of reliability analysis, gives the probability of survival up
to a certain moment in time and is called the reliability function of the system.

The lifetime L is a function of the lifetimes of the np processing elements
that the system is composed of. Denote these individual lifetimes by {Li : Ω→
R}np

i=1. EachLi is characterized by a physicalmodel of wear [37] that describes

12

2.4. Reliability Model

the stress that processing element i is exposed to. Each Li is also assigned an
individual Ri(·|gi), which models the failures due to this stress.

The structure of R(·|g) with respect to {Ri(·|gi)}
np

i=1 is problem specific,
and it can be especially diverse in the context of fault-tolerant systems. There-
fore, R(·|g) is to be devised by the designer of the system under consideration.
To give an example, suppose that the failure of any of the np processing ele-
ments makes the whole system fail, and that {Li}

np

i=1 are conditionally inde-
pendent given the parameters gathered in g. In this scenario,

L =
np

min
i=1

Li and

R(t|g) =
np∏
i=1

Ri(t|gi).
(2.6)

2.4.1 Periodic Thermal Stress

In this subsection, we present a model that is frequently used for characteriz-
ing the lifetime Li of a single processing element when it is exposed to repeti-
tive temperature-induced stress [50, 118]. The scenario under consideration
is that the system is experiencing a periodic workload with a certain period,
which is denoted by τ . The resulting temperature profile is a dynamic steady-
state temperature profile, which will be discussed in Section 3.4.

The lifetime Li is assumed to have a Weibull distribution as follows:

Li|gi ∼Weibull(ηi, βi)

where ηi and βi are called the scale and shape parameters, respectively, and
gi = (ηi, βi). The distribution function of Li is

Fi(t|gi) = 1− exp

(
−
(
t

ηi

)βi
)
, (2.7)

the reliability function of the processing element is

Ri(t|gi) = 1− Fi(t|gi) = exp

(
−
(
t

ηi

)βi
)
, (2.8)

and the corresponding mttf is

µi = ELi = ηi Γ

(
1 +

1

βi

)
(2.9)

where Γ stands for the gamma function.

13

2. Background

Remark 2.1. The Weibull model has a special case: assuming that βi = β

for i = 1, . . . , np, the reliability function in Equation 2.6 belongs to a Weibull
distribution whose shape parameter is β and scale parameter is given by

η =

(∑(
1

ηi

)β
)− 1

β

.

It is natural to expect that the usage conditions and hence the correspond-
ing stress change over the period τ . The distribution of Li should then reflect
this aspect, which is not prominent in Equation 2.7. In order to take this into
account, the period is split into nc,i time intervals {∆tij}

nc,i

j=1 so that the condi-
tions that are relevant to the model remain unchanged in each interval. Let

Lij |gij ∼Weibull(ηij , βij)

be the time to failure that the processing element would have if interval j was
the only interval present and denote the corresponding mttf by µij .

In the case of temperature-induced failures, we specify that βij = βi for j =
1, . . . , nc,i; that is, the shape parameters are all equal. The reason is that, unlike
the scale parameters, the shape parameters are independent of the operating
temperature [13]. As shown in [118], in this scenario, the reliability function
of the processing element can still be approximated by means of Equation 2.8
with the following scale parameter:

ηi =

∑nc,i

j=1 ∆tij∑nc,i

j=1
∆tij
ηij

.

Applying Equation 2.9 at the level of individual intervals, ηi is rewritten as

ηi =

∑nc,i

j=1 ∆tij

Γ
(
1 + 1

βi

)∑nc,i

j=1
∆tij
µij

.

Note now that the model in Equation 2.8 becomes fully specified as soon as
∆tij and µij are identified for j = 1, . . . , nc,i. This part depends on the partic-
ular failure mechanism that is being considered, which we discuss next.

2.4.2 Thermal-Cycling Fatigue

Let us tailor the above Weibull model to thermal-cycling fatigue [37]. This
type of fatigue is of particular interest to us due to its prominent dependence
on temperature fluctuations: apart from the average andmaximumvalues, the
frequencies and amplitudes of temperature oscillations matter in this case.

Time intervals with constant relevant conditions correspond to thermal cy-
cles. In order to detect them in a given temperature curve, the curve is first

14

2.4. Reliability Model

analyzed using a peak-detection algorithm in order to extract a set of extrema.
The rainflow counting method [118] is then applied to these extrema. The
result is a set of nc,i thermal cycles. Each detected cycle is characterized by
a number of properties, including the desired duration ∆tij . Regarding the
corresponding µij , it can be expressed as follows:

µij = nc,ij∆tij

where nc,ij stands for the mean number of such cycles to failure.

Remark 2.2. A cycle detected by the rainflow counting method does not have
to be formed by adjacent extrema; cycles can overlap. This feature makes the
countingmethod very efficient at mitigating overestimation. A cycle could be a
half cycle, meaning that only an upward or downward swing is present in the
time series, which is assumed to be adequately accounted for.

The number nc,ij is estimated using a modified version of the Coffin–
Manson equation with the Arrhenius term as follows [37, 118]:

nc,ij = ai(∆qij −∆q0,ij)
−bi exp

(
ci

kqmax,ij

)
(2.10)

where ai, bi (called the Coffin–Manson exponent), and ci (called the activation
energy) are empirically determined constants; k is the Boltzmann constant;
∆qij is the excursion of the cycle in question; ∆q0,ij is the portion of the tem-
perature excursion that resides in the elastic region, which does not cause dam-
age; and qmax,ij is the maximum temperature during the cycle.

The reliability model of a single processing element is now fully specified.
The reliability function is the one in Equation 2.8 with

ηi =

∑nc,i

j=1 ∆tij

Γ
(
1 + 1

βi

)∑nc,i

j=1
1

nc,ij

(2.11)

where nc,ij is given in Equation 2.10. Using Equation 2.9, the mttf of the
processing element is as follows:

µi =

∑nc,i

j=1 ∆tij∑nc,i

j=1
1

nc,ij

. (2.12)

In conclusion, it is worth emphasizing that the reliability model requires
detailed information about the thermal cycles to which the processing element
is exposed, which is the topic of Chapter 3 and, in particular, Section 3.4 where
dynamic steady-state temperature analysis is discussed in detail.

15

3
Analysis and Design with
Certainty

In this chapter, we elaborate on deterministic system-level analysis and design
of electronic systems. The techniques that we discuss here do not take uncer-
tainty into account. However, these techniques provide an adequate founda-
tion for those that do, which is the topic of the subsequent chapters.

3.1 Introduction

Although there are many aspects that are of significance to the design of an
electronic system, our interest revolves primarily around those that are related
to power and temperature for the following reason: power consumption and
heat dissipation are of great importance. Power translates to energy, and en-
ergy translates to hours of battery life and to electricity bills. Temperature,
on the other hand, is one of the major causes of permanent damage [37],
which necessitates adequate cooling equipment and thereby escalates product
expenses [14]. The situation is complicated even further by the interdepen-
dence between power and temperature, which is discussed in Section 2.2 and
Section 3.5: higher power leads to higher temperature, and higher tempera-
ture to higher power [75]. Consequently, taking power and temperature into
consideration is key to achieving effectiveness, efficiency, and robustness.

In the following, we consider temperature analysis; it is important to real-
ize, however, that power analysis is inseparable from temperature analysis due
to the aforementioned power-temperature interplay. Hence, power analysis is
always implied whenever we discuss temperature analysis, and vice versa.

There are two types of temperature analysis: (a) transient analysis and
(b) steady-state analysis. The first records the temperatures that the system
under consideration traverses in an arbitrary time interval starting from an ar-
bitrary initial condition when it is exposed to a spatially and temporally arbi-

17

3. Analysis and Design with Certainty

trary power distribution. The second records the temperature that the system
attains and retains once it has reached a thermal equilibrium under a power
distribution that is spatially arbitrary but temporally constant or repeating.

Steady-state analysis can be further classified into two categories: (a) static
analysis and (b) dynamic analysis. The first is concerned with temporally con-
stant power distributions, that is, with those that do not change over time. In
this case, the resulting temperature distributions do not change over time ei-
ther. The second is concerned with temporally arbitrary power distributions
that are periodic, that is, with those that repeat with a certain periodicity. In
this case, the resulting temperature distributions change over time with the
same periods as the corresponding repeating power distributions. The sce-
nario being considered is that the system is exposed to a periodic workload or
to a workload that can be approximated as periodic. Prominent examples that
have such periodic behaviors are various multimedia applications.

3.2 Transient Analysis

The goal of transient analysis is to compute the temperature profile Q, which
is defined in Equation 2.2, that corresponds to a given power profileP, which
is defined in Equation 2.1, by solving the system given in Equation 2.5. Tra-
ditionally, this operation is undertaken numerically [100]; however, we are
interested in obtaining and working with an analytical solution to the system,
since such a solution has many advantages, as we shall see later on.

3.2.1 Previous Work

Let us discuss an analytical approach to solving the system of differential equa-
tions given in Equation 2.5a. To begin with, the system is rewritten as follows:

ds̃(t)

dt
= Ãs̃(t) +C−1B̃p(t)

where
Ã = −C−1G.

Next, we apply a technique that is taken from the family of exponential integra-
tors, which have good stability properties; the interested reader is referred to
[48] for an overview. Multiplying both sides of the above system of differential
equations by e−Ãt and noting that

e−Ãt ds̃(t)

dt
=

de−Ãts̃(t)

dt
+ e−ÃtÃs̃(t),

we obtain

s̃(t) = eÃts̃(0) + eÃt

∫ t

0

e−ÃτC−1B̃p(τ)dτ,

18

3.2. Transient Analysis

which is the solution at time t starting from the initial condition s̃(0) at time 0.
Imagine now that the power consumption of the processing elements does

not change over time: p(t) = p. In this case, the system is a system of linear
differential equations that has the following analytical solution:

s̃(t) = eÃts̃(0) + Ã−1(eÃt − I)C−1B̃p (3.1)

where I is the identity matrix.
Suppose now that the sampling interval∆t ofP is small enough so that the

power consumption in each interval [ti, ti+1) can be reasonably approximated
by a constant equal to pi = p(ti). The corresponding Q can then be found by
applying the following recurrence derived from Equation 3.1:

s̃i = Ẽs̃i−1 + F̃pi (3.2)

for i = 1, . . . , ns where

s̃0 = 0 = (0, . . . , 0),

Ẽ = eÃ∆t, and

F̃ = Ã−1(eÃ∆t − I)C−1B̃.

Note that, in order to obtain the actual Q, the recurrence should be followed
by Equation 2.5b, which involves two trivial algebraic operations.

Similarly to the observations made in [85, 109], our experience shows that
the approach to transient analysis described above provides a significant per-
formance improvement compared to iterative solutions to systems of ordinary
differential equations, such as the fourth-order Runge–Kutta method [87].
However, there is still room for improvement, as we discuss next.

3.2.2 Proposed Solution

Even though the matrices Ẽ and F̃ have to be computed only once, they ne-
cessitate two computationally problematic operations: the matrix exponential
and matrix inverse involving Ã ∈ Rnn×nn , which is a generic matrix. It is
preferable to have a symmetric matrixA ∈ Rnn×nn when these operations are
concerned, since such a matrix admits the eigendecomposition, which can be
seen in Equation A.1. Having computed such a decomposition, the calculation
of the matrix exponential and matrix inverse becomes trivial as follows:

eA∆t = UeΛ∆tUT = U diag
(
eλ1∆t, . . . , eλnn∆t

)
UT and (3.3)

A−1 = UΛ−1UT = U diag
(
λ−1
1 , . . . , λ−1

nn

)
UT. (3.4)

In order to obtain such an A, we propose to perform an auxiliary trans-
formation. Recall first that the conductance matrix G is a symmetric matrix,

19

3. Analysis and Design with Certainty

which, intuitively, is due to the fact that, if node i is connected to node j with
a certain conductance, node j is also connected to node i with the same con-
ductance; see Figure 2.1. However, Ã = −C−1G does not have this property.
The desired symmetry can be kept intact using the following substitution:

s(t) = C
1
2 s̃(t) and

A = −C− 1
2GC− 1

2

whereA is symmetric, since

AT = −(C− 1
2GC− 1

2)
T
= −(C− 1

2)
T
GT(C− 1

2)
T
= −C− 1

2GC− 1
2 = A.

Consequently, Equation 2.5 is rewritten as follows:
ds(t)

dt
= As(t) +Bp(t) (3.5a)

q(t) = BTs(t) + qamb (3.5b)

where
B = C− 1

2 B̃.

Similarly, the solution in Equation 3.1 becomes

s(t) = eAts0 +A−1(eAt − I)Bp,

and the recurrence in Equation 3.2 becomes

si = Esi−1 + Fpi (3.6)

for i = 1, . . . , ns where

s0 = 0,

E = eA∆t, and

F = A−1
(
eA∆t − I

)
B.

Using the eigendecomposition in Equation A.1, the last equation can be effi-
ciently computed in the following way:

F = U diag

(
eλ1∆t − 1

λ1
, . . . ,

eλnn∆t − 1

λnn

)
UTB.

As before, the recurrence in Equation 3.6 should be followed by Equation 3.5b
in order to obtain Q. The above auxiliary transformation is helpful not only
for transient analysis but also in other contexts, as we shall see later on.

Let us note at this point that there have been attempts to simplify the tem-
perature model by making additional assumptions in order to reduce the size

20

3.3. Static Steady-State Analysis

of the circuit, thereby speeding up the solution process. For instance, the tech-
niques proposed in [3, 89] are targeting single-core platforms, and the ap-
proach described in [91] is aimed at homogeneous platforms and applications
where the execution times of tasks are comparable with the thermal time con-
stant of the thermal package, which is in the order of 100 s. Such techniques
can be combined with what we present in this thesis as long as C remains a
diagonal matrix, andG remains a symmetric positive definite matrix.

3.3 Static Steady-State Analysis

The goal of static steady-state analysis is to calculate the temperature of the
thermal equilibrium that the system reaches when its power consumption
stays at a certain constant level p for a sufficiently long period of time. In this
case, there are no dynamics, which means that the derivative in Equation 3.5a
is zero. The static steady-state temperature q can then be calculated as

s = −A−1Bp

followed by Equation 3.5b whereA−1 is computed using Equation 3.4. In this
case, p and q can be viewed as a degenerate power profile P and a degenerate
temperature profileQ, respectively, in the sense that ns = 1.

The static steady-state temperature produced by static steady-state analy-
sis is frequently used as a computationally cheap approximation of the thermal
behavior of the system. For instance, given a power profileP with ns > 1, one
might simply compute the average power vector p, perform static steady-state
analysis, andutilize the resulting static q as a guide inside a temperature-aware
design-space-exploration procedure. However, this approximation is of lim-
ited applicability. It assumes that the system under consideration functions at
one constant temperature at each spatial location, which does not hold in the
majority of cases, since, in reality, power consumption readily changes.

3.4 Dynamic Steady-State Analysis

Dynamic steady-state analysis addresses the shortcomings of static steady-
state analysis in one particular but important context. It tackles the scenario
where power consumption follows a periodic pattern. In this case, after a suf-
ficiently long time, the system does not reach a static steady state but instead
a dynamic steady state where temperature starts to exhibit a periodic pattern
following the periodic pattern of power. The goal of the analysis is then to find
the periodic temperature profile Q, called the dynamic steady-state tempera-
ture profile, that corresponds to a given periodic power profile P.

In the case of applications that exhibit periodic or close to periodic behav-
iors, this analysis is of particular importance. Any design optimization has to
be performed such that the efficiency and reliability of the system at hand are

21

3. Analysis and Design with Certainty

10 20 30 40 50
0

20

40

60

80

Number of iterations

n
rm

se
 (

%
)

1 mm2

4 mm2

9 mm2

16 mm2

25 mm2

Figure 3.1: Accuracy of the iterative transient approximation to dynamic
steady-state temperature analysis

maximized by considering not a relatively short transient time interval at the
system’s start but the context in which the system is to function over a long
period of time, which is exactly the dynamic steady state of the system.

A prominent example of a design task for which the analysis is of central
importance is reliability optimization targeted at mitigating thermal-cycling
fatigue [37]. As noted in Section 2.4.2, in this context, the lifetime of the sys-
tem is impacted not only by the average and maximum temperature but also
by the amplitude and frequency of temperature oscillations. Thus, efficient re-
liability optimization depends on the availability of the actual dynamic steady-
state temperature profile, which we discuss further in Section 3.6.

3.4.1 Previous Work

Let us elaborate on the two techniques that have been presented in the litera-
ture in order to calculate the dynamic steady-state temperature profile.

The first technique is referred to as the iterative transient approximation.
In this case, an estimate of the profile is calculated by running a temperature
simulator over a number of successive periods of the application until a suffi-
ciently accurate approximation of the dynamic steady state is assumed to be at-
tained [102]. The typical simulator of choice in this context is HotSpot [100],
which is the state of the art in system-level temperature analysis of electronic
systems; see, for instance, [24, 50, 73, 75, 83, 86, 102, 109, 118]. The simulator
performs transient temperature analysis by solving the system in Equation 2.5
numerically by means of the fourth-order Runge–Kutta method [87].

The number of iterations required to reach the dynamic steady state de-
pends on the thermal characteristics of the platform. In order to illustrate this
aspect, consider an application with a period of 500 ms running on five hypo-
thetical platformswith processing-element areas of 1–25mm2. Let us simulate
50 successive periods of the application via HotSpot with its default settings

22

3.4. Dynamic Steady-State Analysis

50

60

70

Time (ms)

T
em

pe
ra

tu
re

 (
°C

)

Exact solution
Static steady-state
approximation

20 40 60 80 1000

Figure 3.2: Example of the static steady-state approximation to dynamic
steady-state temperature analysis

and compare the resulting approximations in each period with the actual dy-
namic steady-state temperature profiles—whose calculation will be discussed
in Section 3.4.2—using the normalized root-mean-square error (nrmse). The
comparison is shown in Figure 3.1. It can be observed that the number of suc-
cessive periods over which transient analysis has to be performed in order to
achieve a satisfactory level of accuracy is significant for themajority of the con-
figurations, which entails large computation times. For instance, for an area
of 9 mm2, even after 15 iterations, the nrmse is still close to 20%. Using the
analytical approach to transient analysis presented in Section 3.2, the itera-
tive transient approximation can be sped up; however, the large number of
iterations still makes the computational cost unreasonably high, as discussed
further in Section 3.4.3. Moreover, the approach provides no guarantees on
the resulting accuracy, since there is no reliable metric for measuring the prox-
imity to the actual dynamic steady-state temperature profile.

The second technique is referred to as the static steady-state approxima-
tion. It is a crude but fast technique proposed in [50]. The approach forgoes
transient analysis and resorts to static steady-state analysis instead. Specifi-
cally, it is assumed that, in each time interval where the system’s power con-
sumption is constant, the system instantaneously reaches a static steady state.
The result of this procedure is a stepwise temperature curve where each step
corresponds to the static steady-state temperature that would be reached if the
corresponding power was applied for a sufficiently long period of time.

An example of such an approximation, along with the actual dynamic
steady-state temperature profile, for an application with 10 tasks and a period
of 100ms is given in Figure 3.2. The processing-element area is 25mm2 in this
case. The reduced accuracy of this technique is due to the mismatch between
the actual temperature within each interval and the static steady-state temper-
ature. The inaccuracy depends on the thermal characteristics of the platform
and on the application itself. In order to illustrate this, let us simulate five ap-

23

3. Analysis and Design with Certainty

5 10 15 20 25
0

40

80

120

160

Processing-element area (mm2)

n
rm

se
 (

%
)

10 ms
20 ms
50 ms
100 ms
1000 ms

Figure 3.3: Accuracy of the static steady-state approximation to dynamic
steady-state temperature analysis

plications with periods of 10–1000 ms running on five platforms with an area
per processing element of 1–25 mm2. The errors are shown in Figure 3.3. It
can be seen that, for example, for an area of 10 mm2 and a period of 100 ms,
the nrmse of this approximation technique is close to 40%.

To conclude, the current state-of-the-art techniques for dynamic steady-
state temperature analysis are slow and inaccurate. This state of affairs makes
them difficult and dangerous from the standpoint of design optimization.

3.4.2 Proposed Solution

In this subsection, we formalize the problem of dynamic steady-state temper-
ature analysis and develop an exact and, moreover, computationally efficient
solution to this problem, which eliminates the shortcomings of the state-of-
the-art solutions discussed in the previous subsection.

Consider the temperature model in Equation 3.5 and the corresponding
recurrence in Equation 3.6. The key condition of a dynamic steady state is

s0 = sns . (3.7)

The above condition means that, once the dynamic steady state has been
reached, the electronic system starts returning to its initial state at the end
of each iteration, which is what makes the system’s behavior periodic. Then,
using Equation 3.6, the dynamic steady-state temperature profile can be com-
puted by solving the following system of linear equations:

s1 −Esns = Fp1

s2 −Es1 = Fp2

. . .

sns
−Esns−1 = Fpns

24

3.4. Dynamic Steady-State Analysis

where the first equation enforces the boundary condition in Equation 3.7. In
order to get the big picture, the system can be rewritten as follows:

I 0 0 · · · 0 0 −E
−E I 0 · · · 0 0 0

0 −E I · · · 0 0 0

· ·
0 0 0 · · · I 0 0

0 0 0 · · · −E I 0

0 0 0 · · · 0 −E I


︸ ︷︷ ︸

A



s1
s2
s3
· · ·
sns−2

sns−1

sns


︸ ︷︷ ︸

X

=



Fp1

Fp2

Fp3

· · ·
Fpns−2

Fpns−1

Fpns


︸ ︷︷ ︸

B

(3.8)

where A is an nnns × nnns matrix, and X and B are nnns-element vectors.
The most direct way to solve the system in Equation 3.8 is to use a dense

solver, such as the lu decomposition [87]. However, since A is a sparse ma-
trix, a more appropriate approach is to employ a sparse solver, such as the un-
symmetric multifrontal method [29]. The computational complexity of such
solutions is O(n3sn3n) [87] where nn is the number of nodes in the thermal rc
circuit, and ns is the number of samples in the power profile. The problem,
however, is that the system to solve can be extremely large, which is due pri-
marily to ns. In such cases, direct solvers are prohibitively slow and require an
enormous amount of memory. Therefore, we do not discuss them any further.

Another potential approach is leveraging iterative methods for solving sys-
tems of linear equations, such as the Jacobi or Gauss–Seidel method [87].
Such methods are designed to overcome the problems of direct solvers, and
they are consequently applicable for very large systems. However, the most
important issue with these methods is their convergence. In our experiments,
we have not observed any advantages of using these methods compared to the
other techniques. Thus, they are excluded from further discussion.

Yet another solution can be obtained by observing that A in Equation 3.8
is, in fact, a block Toeplitz matrix and, moreover, a block-circulant matrix, in
which each block row is rotated one block element to the right relative to the
preceding block row. This observation leads to a range of possible techniques
for solving the system of equations shown in Equation 3.8, such as the fast
Fourier transform [30] used in the experiments reported in Section 3.4.3.

The major problem with the aforementioned techniques is that (a) the
sparseness of A is not taken into account, or (b) the specific structure of A
is ignored, which results in inefficient and, in some cases, inaccurate compu-
tations. Let us now develop a solution that does not have these issues.

Have a careful look at the structure of A in Equation 3.8. The nonzero
elements are located only on the block diagonal, the subdiagonal attached to
the block diagonal, and the superdiagonal in the top-right corner of thematrix.
Linear systems with similar structures arise in boundary value problems of
ordinary differential equations, and the technique to solve them is to form a
so-called condensed equation or condensed system [104], as we describe next.

25

3. Analysis and Design with Certainty

To begin with, let
vi = Fpi

for i = 1, . . . , ns. Equation 3.6 can then be rewritten as follows:

si = Esi−1 + vi (3.9)

for i = 1, . . . , ns. Applying this formula recursively starting from s0 leads to

si = Eis0 +wi

for i = 1, . . . , ns. In the above,wi is an auxiliary recurrence defined by

wi = Ewi−1 + vi (3.10)

for i = 1, . . . , ns where
w0 = 0.

After taking ns steps, we arrive at the following state vector:

sns = Enss0 +wns .

Taking into account the boundary condition given in Equation 3.7, we obtain
the following system of linear equations:

(I−Ens)sns = wns .

SinceE is thematrix exponential, which can be seen inEquation 3.3, the above
system can be rewritten as follows:

(I−UeΛτUT)sns
= wns

where τ = ns∆t is the period of the power profile P. By splitting the identity
matrix I intoUUT, we obtain the following solution to the system:

sns
= U(I− eΛτ)−1UTwns

= Udiag

(
1

1− eλ1τ
, . . . ,

1

1− eλnsτ

)
UTwns

.

The above equation yields not only the final state vector sns but also the initial
one s0. Consequently, the rest of the state vectors {si}ns−1

i=1 can be successively
found by means of Equation 3.9 where each vi has already been calculated
when computing wns . The last step of the solution is to compute the actual
dynamic steady-state temperature profileQ by applying Equation 3.5b.

It can be seen that the solution to the nnns × nnns system in Equation 3.8
has been reduced to the two trivial recurrences in Equation 3.9 and Equa-
tion 3.10 that traverse the ns steps of the power profile P. The pseudocode
for this solution is given in Algorithm 3.1, and its key aspects are as follows.

26

3.4. Dynamic Steady-State Analysis

Algorithm 3.1: Calculation of a dynamic steady-state temperature profile

Input: P ∈ Rnp×ns

Output: Q ∈ Rnp×ns

1: V← FP // an auxiliary variable
2: w←V(:, 1) // an auxiliary variable
3: for i← 2 to ns do
4: w← Ew +V(:, i)
5: end for
6: S(:, ns)←U diag(1

1−eλiτ
)UTw // a matrix version of s

7: for i← 1 to ns − 1 do
8: S(:, i)← ES(:, i− 1) +V(:, i)
9: end for
10: Q←BTS+Qamb // a matrix version of qamb

11: returnQ

Line 2–5: Equation 3.10 is recursively evaluated for all time steps of the
input power profile P in order to calculate the auxiliary vectorwns

.
Line 6: The calculated wns

is utilized in order to compute the final state
vector sns

, which is then stored in the last column of an nn × ns matrix S.
Line 7–9: Using sns

or, equivalently, s0, Equation 3.9 is recursively evalu-
ated in order to calculate the remaining state vectors, that is, {si}ns−1

i=1 . Note
that, in the first iteration, S(:, 0) should be understood as S(:, ns).

Line 10: Equation 3.5b is applied in order to compute the desiredQ.
It is worth noting that the auxiliary transformation presented in Sec-

tion 3.2.2 and the accompanying eigendecomposition in Equation A.1 have
substantially simplified the calculations associated with dynamic steady-state
analysis. Note also that the eigendecomposition along with E and F are com-
puted only once for a particular thermal rc circuit and can be considered to be
given together with the circuit. In other words, these quantities stay the same
when different power profiles are to be analyzed, which is particularly advan-
tageous when an intensive design-space-exploration procedure is concerned.

The computational complexity of the whole procedure is estimated to be

O
(
nsn

2
n + n3n

)
.

The complexity is linear with respect to ns, which is important, since ns is
typically much larger than nn, that is, the number of thermal nodes.

3.4.3 Experimental Results

Let us assess the performance of the solution to dynamic steady-state analysis
proposed in Section 3.4.2. All the experiments are conducted on a gnu/Linux
machine equipped with an Intel Core i7 3.4 ghz and 8 gb of ram.

27

3. Analysis and Design with Certainty

200 400 600 800 1000
10−4

10−3

10−2

10−1

100

101

Number of time steps

C
om

pu
ta

ti
on

 ti
m

e
(l

n(
s)

) Proposed solution
Fourier transform
Iterative transient
approximation
Iterative transient
approximation
with HotSpot

Figure 3.4: Computational speed of different solutions to dynamic steady-
state analysis with respect to the number of time steps

Thermal rc circuits are constructed by means of HotSpot [100] with its
default configuration, and they follow the principle described in Section 2.3.
The sampling interval∆t of power and temperature profiles is set to 1 ms.

For purposes of comparison, we consider two alternative techniques.
Namely, we use the one based on iterative transient analysis, which is intro-
duced in Section 3.4.1, and the one based on the fast Fourier transform, which
is mentioned in Section 3.4.2, since they are comparable with the proposed
technique in terms of accuracy. In the case of transient analysis, we evaluate
both the fast analytical solution described in Section 3.2.2 and the one imple-
mented in HotSpot, and the corresponding iterative calculation is performed
until the nrmse relative to the dynamic steady-state temperature profile com-
puted by means of the proposed method, which is exact, is less than 1%.

First of all, we vary the period τ of power and temperature profiles—and,
therefore, the number of samples ns that they contain—while keeping the ar-
chitecture fixed, which is a quad-core platformwith a processing-element area
of 4 mm2. The results of this experiment are depicted in Figure 3.4 on a
semilogarithmic scale. It can be seen that the proposed technique is 9–170
times faster than iterative transient analysis with the analytical solution and
roughly 5000 times faster than iterative transient analysis with HotSpot.

In the second experiment, we evaluate the scaling properties of ourmethod
with respect to the number of processing elements np. The period is fixed to
500 ms, which results in 500 time steps. The results are shown in Figure 3.5.
It can be observed that the proposed technique provides a significant perfor-
mance improvement relative to the alternative solutions.

28

3.5. Power-Temperature Interdependence

5 10 15 20 25 30
Number of processing elements

C
om

pu
ta

ti
on

 ti
m

e
(l

n(
s)

) Proposed solution
Fourier transform
Iterative transient
approximation
Iterative transient
approximation
with HotSpot

10−3

10−1

101

100

10−2

Figure 3.5: Computational speed of different solutions to dynamic steady-state
analysis with respect to the number of processing elements

3.5 Power-Temperature Interdependence

So far, the interdependence between power and temperature, which is intro-
duced in Section 2.2, has been ignored. In order to properly take it into ac-
count, several approaches can be employed as follows.

The first approach is to calculate the power and temperature profiles sev-
eral times in turns until the latter converges. In this case, we obtain a series of
pairs of a power profile and a temperature profile

{(Pi,Qi) : i = 1, 2, . . . } .

For each new temperature profileQi—which is computed by performing tran-
sient, static steady-state, or dynamic steady-state analysis as usual—a new
power profile Pi is obtained by recalculating the static power component and
adding it to the dynamic one, which we write as follows:

Pi = Pdyn +Pstat,i(Qi−1)

where Pstat,i is computed usingQi−1. The process continues until a stopping
condition is satisfied, such as when the difference between two successive tem-
perature profilesQi−1 andQi drops below a predefined threshold.

In the case of dynamic steady-state analysis, which is discussed in Sec-
tion 3.4, the pseudocode for the aforementioned iterative procedure is listed
in Algorithm 3.2. The two main steps of this algorithm are as follows.

Line 3: The power profileP is updated using the current temperature pro-
fileQ. In the first iteration, the ambient temperature is used for this purpose.

Line 4: The temperature profileQ is updated using the current power pro-
file P by means of Algorithm 3.1, which is discussed in Section 3.4.2.

In order to give a better sense of the convergence rate of the iterative pro-
cedure, let us give an example. According to our experience, it typically takes
4–7 iterations until the uniform norm of the difference between two successive

29

3. Analysis and Design with Certainty

Algorithm 3.2: Calculation of dynamic steady-state power and temperature
profiles considering the power-temperature interdependence

Input: Pdyn ∈ Rnp×ns

Output: P ∈ Rnp×ns ,Q ∈ Rnp×ns

1: Q←Qamb // a matrix version of qamb

2: repeat
3: P← Pdyn +Pstat(Q)
4: Q← Algorithm 3.1(P)
5: until a stopping condition is satisfied
6: return P,Q

dynamic steady-state temperature profiles becomes smaller than 0.5°C, which
is considered to be sufficiently accurate for many applications.

In the case of transient analysis, the iterative procedure can also be done on
a step-by-step basis, even with only one iteration. Specifically, at each step of
the iterative process in Equation 3.6, one can simply calculate the static power
component at the current temperature, add it to the dynamic one, and use the
result for evaluating the next temperature. Hence, the recurrence becomes

si = Esi−1 + F(pdyn,i + pstat,i(qi−1))

for i = 1, . . . , ns where, as indicated, pstat,i is computed using qi−1.
The second approach is to use a linear approximation of static power, which

can be formalized as follows:

pstat(t) = Âq(t) + b̂

where Â ∈ Rnn×nn and b̂ ∈ Rnn are a diagonal matrix and a vector to be fitted.
It can be shown that the linear approximation keeps the original system of dif-
ferential equations in Equation 2.5a almost intact. More precisely, it becomes

C
ds̃(t)

dt
+ Ĝs̃(t) = B̃p̂(t)

where

Ĝ = G− B̃ÂB̃T and

p̂(t) = pdyn(t) + Âqamb + b̂,

and Ĝhas the sameproperties asG. Therefore, all the solutions that have been
derived in this chapter remain perfectly valid. Moreover, as shown in [75],
despite its simplicity, the approximation is relatively accurate and, if needed,
can be improved by considering multiple linear segments.

In order to evaluate the linearization, we consider a number of hypothetical
platformswith 2–32 processing elements and undertake dynamic steady-state

30

3.6. Reliability Optimization

analysis. The experiment is performedwith both the linear approximation and
the full exponential model in Equation 2.4. For the former, the model is fitted
using least squares [87] targeted at the range 40°C–80°C. For the latter, we
use the iterative approach described earlier. The results show that the nrmse
is bounded by 2%, indicating that the linearization is adequately accurate.

It is important to note that, regardless of the approach utilized, power and
temperature are analyzed simultaneously, as they are interdependent. One
obtains not only a temperature profile but also the corresponding static or total
power profile, and all profiles take account of the power-temperature interplay.

Lastly, let usmention that static power is not considered in the experiments
given in Section 3.4.3. However, if it was taken into account using the lin-
earization, the computation times would remain unchanged, and, if the itera-
tive model was utilized, the computation times would increase proportionally
for all the techniques, which would not affect any of the conclusions.

3.6 Reliability Optimization

In this section, we illustrate the importance of temperature analysis for design-
space exploration and, more specifically, for reliability optimization.

Among the commonly studied failure mechanisms (see Section 1.1.3), ther-
mal cycling arguably has the most prominent dependence on temperature: as
noted earlier, not only the average andmaximum temperature but also the am-
plitude and frequency of temperature oscillations have a huge impact on the
lifetime of the system. With this in mind, we focus our attention on mitigat-
ing the damage caused by thermal cycling. To this end, relying on our solu-
tion to dynamic steady-state analysis presented in Section 3.4.2, we develop
a thermal-cycling-aware technique for scheduling periodic applications. Note
that, by exploring the design space in order to find configurations that reduce
wear on the system, we implicitly address aging uncertainty, which is intro-
duced in Section 1.1.3. However, this approach to aging uncertainty is subop-
timal, which is discussed further and addressed in Section 5.11.

3.6.1 Motivational Example

Consider a periodic application with six tasks denoted by T1–T6 and a hetero-
geneous platformwith two processing elements denoted by PE1 and PE2. The
application’s task graph is given in Figure 3.6 along with the execution times
of the tasks for both PE1 and PE2. The period of the application is 60 ms.

The first alternative schedule and the resulting dynamic steady-state tem-
perature profile are shown on the left-hand side of Figure 3.7 where the height
of a task represents its power consumption. Note that themapping of the tasks
onto the processing elements is treated as a part of the schedule. The blue
curve illustrates that PE1 is experiencing three thermal cycles; that is, there
are three intervals where temperature starts from a certain value, reaches an

31

3. Analysis and Design with Certainty

Deadline
60 ms10/12

10/12

15/1715/17

10/12

10/12

Execution time
PE1/PE2 (ms)

T1

T2

T3

T4 T5 T6

Figure 3.6: Task graph of an application along with the execution times of the
tasks with respect to two processing elements

PE1

PE2

0 20 40 60

40

50

60

Time (ms)

T
em

pe
ra

tu
re

 (
°C

)

T1 T2

T3

T4

T5

T6 T1 T2

T3

T4

T5 T6

T1 T4 T2

T3 T5 T6

Time (ms) Time (ms)
0 20 40 60 0 20 40 60

0 20 40 60 0 20 40 60 0 20 40 60
Time (ms) Time (ms) Time (ms)

Figure 3.7: Alternative schedules, including mappings, of the application and
the corresponding dynamic steady-state temperature profiles

extremum, and then comes back. If we move T6 to PE2, the number of cy-
cles decreases to two, which can be seen in the middle of Figure 3.7. If we
also swap T2 and T4, the number of cycles that PE1 undergoes drops to one,
which is depicted on the right-hand side of Figure 3.7. According to the relia-
bilitymodel described in Section 2.4.2, these two changes improve the lifetime
of the electronic system by around 45% and 55%, respectively, relative to the
initial schedule, which can be seen on the left-hand side of Figure 3.7.

The above motivational example shows that, when exploring the design
space, it is important to take into consideration the number of temperature
fluctuations as well as their characteristics. In order to acquire this informa-
tion, dynamic steady-state temperature analysis is required.

3.6.2 Problem Formulation

In addition to the description given in Section 2.1, the platformunder consider-
ation is supposed to execute a periodic application with nt tasks. The applica-

32

3.6. Reliability Optimization

tion is given as a directed acyclic graph whose vertices and edges correspond
to the tasks and to data dependencies between these tasks, respectively; see
Figure 3.6. Each pair of a task and a processing element is characterized by an
execution time and a power consumption value, which are the characteristics
that the task exhibits when it is assigned to the processing element.

The optimization objective is to find a schedule thatmaximizes the lifetime
of the system under certain constraints. Formally, the objective is

max
S

np

min
i=1

µi(S) (3.11)

such that

τ(S) ≤ τmax and

Q(S) ≤ qmax.
(3.12)

In the above formulae, S denotes a schedule, which specifies the starting times
of the tasks as well as their mapping onto the processing elements; µi is the
mean time to failure (mttf) of processing element i, which is computed ac-
cording to the reliability model presented in Section 2.4.2 and can be seen in
Equation 2.12; τ stands for the end-to-end delay of the application; and

Q(S) = ∥Q(S)∥∞

where Q is the dynamic steady-state temperature profile of the platform, and
∥ · ∥∞ denotes the uniform norm. The first constraint in Equation 3.12 en-
forces a deadline τmax on the schedule while the second constraint enforces a
maximum temperature qmax on the resulting temperature profileQ.

3.6.3 Proposed Solution

The application is scheduled by means of a static cyclic scheduler that follows
the list scheduling policy [1]. The input to the scheduler is a vector mapping
the tasks onto the processing elements and a vector assigning priorities to the
tasks. The scheduler produces a vector prescribing starting times for the tasks,
and this vector together with the given mapping constitute a schedule S.

The optimization procedure is undertaken via a genetic algorithm [97]. In
this biologically inspired paradigm, a population of chromosomes, which rep-
resent candidate solutions, is evolved through a number of generations in or-
der to produce a chromosome with the best possible fitness, that is, a solution
thatmaximizes the objective function. In our case, the fitness of a chromosome
is calculated in accordance with Equation 3.11 and, more specifically, is set to

np

min
i=1

µi(S) (3.13)

unless any of the constraints is violated, which we explain in the following.

33

3. Analysis and Design with Certainty

Each chromosome contains 2nt genes—twice the number of tasks—and it
can be viewed as two concatenated vectors with nt elements each. The first
one encodes a mapping of the tasks onto the processing elements, and the
other one a set of priorities for the tasks. The usage of this information will be
discussed shortly. The population contains 4nt chromosomes. In each genera-
tion, a number of chromosomes are chosen for breeding by a tournament selec-
tion with the number of competitors proportional to the population size. The
chosen chromosomes undergo a two-point crossover with probability 0.8 and
a uniform mutation with probability 0.01. The evolution mechanism follows
the elitism model where the best chromosome always survives. The stopping
condition is the absence of improvement within 200 successive generations.

The fitness of a chromosome is evaluated in a number of steps. First, the
chromosome is decoded, and the mapping of the tasks onto the processing el-
ements and the priorities of the tasks are fed to the scheduler. The scheduler
produces a schedule S. If the schedule violates the deadline constraint given
in Equation 3.12, the chromosome is penalized proportionally to the amount
of violation and is not processed further. Otherwise, based on the parameters
of the processing elements and tasks, a power profileP is constructed, and the
corresponding temperature profile Q is computed using our technique pre-
sented in Section 3.4.2. If the temperature profile violates the temperature
constraint given in Equation 3.12, the chromosome is penalized proportion-
ally to the amount of violation and is not processed further. Otherwise, the
mttf of each processing element is estimated according to Equation 2.12, and
the fitness of the chromosome is set as shown in Equation 3.13.

3.6.4 Experimental Results

In this subsection, we evaluate our reliability optimization. We first consider
a number of synthetic applications and then study a real-life one. The general
experimental setup is the same as the one described in Section 3.4.3. All the
configuration files used in the experiments are available online at [16].

Heterogeneous platforms and periodic applications are randomly gener-
ated by virtue of tgff [34] in such a way that the execution times of tasks are
uniformly distributed between 1 and 10 ms, and that the static power of pro-
cessing elements accounts for around 40% of their total power [75]. The area
of a processing element is set to 4 mm2. The modeling of static power is based
on the linearization discussed in Section 3.5. Themaximum temperature qmax

in Equation 3.12 is set to 100°C. In Equation 2.10, the Coffin–Manson expo-
nent bi is set to 6, the activation energy ci to 0.5, and the elastic region ∆q0,ij
to 0 [37]; the value of the coefficient ai in Equation 2.10 is irrelevant, since we
are concerned with relative improvements, which will be explicated shortly.

The initial population of chromosomes is created partially randomly and
partially based on a temperature-aware heuristic proposed in [119], which we
refer to as the initial solution. The heuristic relies on spatial temperature vari-

34

3.6. Reliability Optimization

Table 3.1: Results of the optimization procedure with respect to the number
of processing elements, including the computational speed

np nt mttf (×) Energy (×) Time (s)

2 40 39.41 0.97 7.84
4 80 37.11 0.99 65.76
8 160 31.36 0.97 759.29
16 320 13.51 0.98 3484.59

Table 3.2: Results of the optimization procedure with respect to the number
of tasks, including the computational speed

np nt mttf (×) Energy (×) Time (s)

4 40 64.53 0.88 9.96
4 80 38.01 0.96 56.57
4 160 18.08 1.07 352.20
4 320 12.92 1.05 408.42

ations and tries to minimize the maximum temperature while satisfying real-
time constraints. This initial solution is also used to decide on the deadline
constraint τmax in Equation 3.12: it is set to the duration of the initial sched-
ule extended by 5%. Furthermore, the initial solution serves as a baseline for
evaluating the performance of the solutions delivered by our optimization.

In the first set of experiments, we change the number of processing ele-
ments np while keeping the number of tasks nt per processing element con-
stant and equal to 20. For each problem, we generate 20 random task graphs
and compute the average change in themttf relative to the initial solution. In
addition, we calculate the average change in energy consumption. The results
are reported in Table 3.1, which also shows the average time that is taken by
the optimization procedure. It can be seen that the reliability-aware optimiza-
tion increases the mttf by a factor of 13–40. Even for large problems—such
as those with 16 processing elements executing 320 tasks—a feasible sched-
ule that significantly improves the lifetime of the system can be found in an
affordable time. Moreover, as shown in Table 3.1, the optimization does not
have much of an impact on the energy efficiency of the system.

In the second set of experiments, we keep the quad-core platform and vary
the number of tasks nt of the application. As before, for each problem, we
generate 20 random task graphs and monitor the changes in the mttf and
energy consumption relative to the initial solution. The results can be seen in
Table 3.2. The observations are similar to those made with respect to Table 3.1.

The experiments show that our optimization is able to effectively increase
the mttf of the system at hand. The efficiency is due to the fast and accu-
rate approach to dynamic steady-state temperature analysis presented in Sec-

35

3. Analysis and Design with Certainty

Table 3.3: Results of the optimization procedure with respect to the solution
to dynamic steady-state temperature analysis

np nt mttf (×) mttfa (×) mttfb (×)

4 40 64.53 1.29 25.10
4 80 38.01 1.67 13.87
4 160 18.08 2.02 5.33
4 320 12.92 1.72 3.82

tion 3.4.2, which is at the heart of the optimization procedure. Due to its speed,
the technique allows a large portion of the design space to be explored.

In order to illustrate the above aspect, let us replace our solution, inside the
optimization framework, with (a) the one based on iterative transient analysis
with HotSpot and (b) the one based on static steady-state analysis; see Sec-
tion 3.4.1. The goal is to compare the results in Table 3.2 with the results pro-
duced by the two alternative methods when they are given the same amount
of time as the amount taken by our method. For each problem, the optimized
mttfproduced by either of the two approximatemethods is re-evaluated using
our exact method. The results are summarized in Table 3.3 where mttfa and
mttfb stand for the two alternative methods, respectively. It can be seen that,
for example, the lifetime of the platform running 160 tasks can be extended
by a factor of 18 using our technique, whereas the best solutions found by the
other two methods within the same time frame are only 2–5 times better than
the initial solution. The reason for the poor performance of iterative transient
analysis with HotSpot is the excessively long execution time of the calculation
of dynamic steady-state temperature profiles, which means that this method
allows for a very shallow exploration of the design space. In the case of static
steady-state analysis, the reason is different: the method is fast but also very
inaccurate, which is discussed and illustrated in Section 3.4.1. The inaccuracy
drives the optimization toward solutions that turn out to be of low quality.

The experiments show that the impact of the optimization on energy con-
sumption is insignificant. This is not surprising: the optimization searches
toward low-temperature solutions, which are also implicitly the low-leakage
ones. In order to explore this further, let us perform a multiobjective opti-
mization along the dimensions of energy and reliability, and let us use nsga-ii
[31] for this purpose. The resulting Pareto front averaged over 20 applications
with 80 tasks deployed on a quad-core platform is displayed in Figure 3.8. It
can be seen that the variation in the energy change is less than 2%. Thismeans
that the solutions optimized for the mttf and the solutions optimized for en-
ergy have almost identical energy consumption values. At the same time, the
difference along the mttf dimension is huge. This implies that, by ignoring
the reliability aspect, the designer might end up with a significantly decreased
mttf without any significant gain in terms of energy consumption.

36

3.7. Conclusion

24 28 32 36 40

0.87

0.88

mttf (×)

E
ne

rg
y

(×
)

< 2%

> 70%

Figure 3.8: Pareto front delivered by the multiobjective optimization

Finally, we consider a real-life application, namely an mpeg-2 decoder
[38], which is assumed to be deployed on a dual-core platform. The decoder
is analyzed and split into 34 tasks. The parameters of each task are obtained
through a system-level simulation using mparm [5]. The deadline is set to
40 ms assuming 25 frames per second. The solution found by the proposed
method improves the lifetime of the system by a factor of 23.59 with a 5% en-
ergy saving compared to the initial solution. The solutions found by undertak-
ing the same optimization via the two alternative methods mentioned earlier
are only 5.37 and 11.5 times better, respectively, than the initial one.

To conclude, the experimental results have demonstrated the superiority
of the proposed approach to dynamic steady-state temperature analysis in the
context of reliability optimization compared to the state of the art.

3.7 Conclusion

In this chapter, we have elaborated on deterministic analysis and design of
electronic systems. Due to the paramount importance of power and tempera-
ture for efficiency and robustness, our focus has been primarily on these two
quantities. Three types of temperature analysis have been covered in detail:
transient analysis, static steady-state analysis, and dynamic steady-state anal-
ysis. We have proposed an auxiliary transformation of the temperature model
that allows for computationally efficient and convenient calculations associ-
ated with temperature analysis. Leveraging the transformation, we have de-
veloped a fast and accurate solution to dynamic steady-state analysis. Using
our solution, we have conducted a temperature-aware reliability optimization
addressing thermal-cycling fatigue and have shown that taking temperature
fluctuations into consideration can significantly prolong the lifetime of the sys-
tem under consideration without affecting its energy efficiency.

As discussed in Section 1.2, uncertainty-unaware analysismisrepresents re-
ality, and uncertainty-unaware design produces unsatisfactory, if not strictly

37

3. Analysis and Design with Certainty

dangerous, products. Therefore, the designer of electronic systems cannot di-
rectly rely on techniques such as the ones presented in this chapter. These tech-
niques, however, constitute an important building block for those that take
uncertainty into consideration, which we discuss in the following chapters.

38

4
Analysis of Process Uncertainty

Starting with this chapter and relying on the exposition given in Chapter 3, we
turn our attention to techniques that address uncertainty. In this particular
chapter, we aim to analyze process variation across semiconductor wafers.

4.1 Introduction

As discussed in Section 1.1.1, process variation is an exigent concern of
electronic-system designs, since it can lead to deterioration in efficiency and
to faults of various magnitudes. Therefore, process variation should be ade-
quately analyzed as the first step toward an efficient and robust product.

An important problem in this regard is to characterize the on-wafer dis-
tribution of a quantity deteriorated by process variation given a set of mea-
surements. The problem belongs to the class of inverse problems, since the
measured data can be seen as an output of the system at hand, and the desired
quantity can be seen as an input. Such an inverse problem is addressed here.

Our goal is to estimate on-wafer distributions of arbitrary process parame-
ters with high accuracy and at low costs. The goal is accomplished by measur-
ing auxiliary quantities that are more convenient and less expensive to work
with, and then employing statistics in order to infer the desired parameters
from themeasurements. Specifically, we propose a novel approach to the quan-
tification of process variation based on indirect and potentially incomplete and
noisymeasurements. Moreover, we develop a solid framework around the pro-
posed idea and perform a thorough study of various aspects of our technique.

39

4. Analysis of Process Uncertainty
E

�
ective channel length (σ)

0

1

2

−1

−2

3

Figure 4.1: Example of a true distribution (left) and an inferred distribution
(right) of the effective channel length across a silicon wafer

4.2 Motivational Example

Consider the distribution of the effective channel length, which we denote by
g in this section, across a silicon wafer. As noted in Section 2.2, g has one of
the strongest effects on the leakage current and consequently on power and
temperature [58]. At the same time, g is well known to be severely affected
by process variation [12, 103]. Therefore, the distribution of g is not uniform
across the wafer. For concreteness, let this distribution be the one depicted on
the left-hand side of Figure 4.1. The gradient from blue to yellow represents
the transition of g from low to high values, and the scale is given in terms of
the number of standard deviations away from themean value; the exact experi-
mental setup will be described in detail in Section 4.6. Hence, the blue regions
have a high level of power consumption and heat dissipation.

Assume that the technological process imposes a lower bound gmin on g. It
separates defective dies (g < gmin) from those that are acceptable (g ≥ gmin).
In order to reduce costs, the manufacturer is interested in detecting the faulty
dies and taking themout of the productionprocess at the earliest possible stage.
The possible actions with respect to a die on the wafer are then (a) to keep the
die if it conforms to the specification or (b) to dispose of it otherwise.

In order to analyze the variability in the effective channel length g across
the wafer, one could remove the top layer of the dies (hence destroying them)
andmeasure g directly. Alternatively, despite the fact that the knowledge of g is
more preferable, one could step back and decide to quantify process variation
using an auxiliary parameter h that can be measured without damaging the
dies; for instance, h could be the leakage current. It should be noted that, in
this second case, h is the final product of the analysis, and g remains unknown.

In either case, adequate test structures have to be present on the dies in or-
der to take measurements at a sufficient number of locations with a sufficient
level of granularity. Such a sophisticated test structure might not always be

40

4.2. Motivational Example

P
robability of defect

0.50

0.00

1.00

0.75

0.25

Figure 4.2: Locations of the measured dies (left) and the defective dies (right)
as well as the inferred probability of defect (right)

readily available, and its deployment might significantly increase production
expenses. Moreover, as noted earlier, the first approach implies that the mea-
sured dies have to be disposed of afterwards, and the second approach implies
that further design decisions will be based on a surrogate quantity h instead
of the primary target of process variation g, which could compromise these de-
cisions. The latter concern is particularly prominent in situations where the
production process is not yet completely stable, and design decisions based on
the primary subjects of process variation are consequently preferable.

Our technique operates differently. In this example, in order to character-
ize the effective channel length g, we begin by measuring an auxiliary quantity
h. The quantity is required to depend on g, and it can be chosen to be conve-
nient from a measurement perspective. The distribution of g across the whole
wafer is then obtained by inferring it from the collected measurements of h.
Our technique permits these measurements to be taken only at a small num-
ber of locations on the wafer and to be corrupted by noise, which could be due
to the imperfection of the measurement equipment that is utilized.

Let us consider one particular h that can be used to study the effective chan-
nel length g. Specifically, let h be temperature, which will be discussed further
in Section 4.6. We can then apply a fixed workload—for instance, we can run
the same application under the same conditions—to a few dies on the wafer
and measure the corresponding temperature profiles. Since temperature does
not require extra equipment to be deployed on the wafer and can be tracked
using infrared cameras [78] or built-in components of the dies, our approach
can reduce the costs associated with analysis of process variation. The results
of our framework applied to a set of noisy temperature profiles measured only
on 7% of the dies are shown on the right-hand side of Figure 4.1, and the loca-
tions of the measured dies are depicted on the left-hand side of Figure 4.2. It
can be seen that the twomaps in Figure 4.1 closely match each other, implying
that the distribution of g is reconstructed with a high level of accuracy.

41

4. Analysis of Process Uncertainty

Another characteristic of the proposed framework is that probabilities of
various events, for instance, P(g ≥ gmin), can be readily estimated. This is
important, since the true values are unknown in reality; otherwise, we would
not need to infer them. Therefore, we can rely on our decisions only up to a
certain probability. We can then reformulate the decision rule given earlier as
follows: (a) to keep the die if P(g ≥ gmin) is larger than a certain threshold or
(b) to dispose of it otherwise. An illustration of following this rule is given on
the right-hand side of Figure 4.2 where gmin is set to two standard deviations
below the mean value of g, the probability threshold of the first action is set to
0.9, the crosses mark both the true and inferred defective dies (they coincide),
and the gradient from white to orange corresponds to the inferred probability
of defect. It can be seen that the inference accurately detects the faulty dies.

In addition, we can introduce a trade-off action between action (a) and
action (b) as follows: (c) to expose the die to a thorough inspection (for in-
stance, via a test structure) if P(g ≥ gmin) is smaller than the threshold of
action (a) but larger than another threshold. For instance, action (c) can be
taken if 0.1 < P(g ≥ gmin) < 0.9. In this scenario, we can reduce expenses
by examining only those dies for which there is no sufficiently strong evidence
of their satisfactory or unsatisfactory condition. Furthermore, one can take
into consideration a so-called utility function, which, for each combination of
an outcome of g and an action that is taken, returns the gain that the deci-
sion maker obtains. For example, such a function could favor a rare omission
of malfunctioning dies over a frequent inspection of correct dies, as the latter
might involve much higher costs. The optimal decision is given by the action
that maximizes the expected utility with respect to both the observed data and
prior knowledge regarding g. Consequently, all possible values of g weighted
by their probabilities are taken into account in the final decision while also
incorporating the preferences of the designer via the utility function.

4.3 Problem Formulation

Consider a generic silicon wafer that accommodates nd dies. We are interested
in studying a certain process parameter, which is denoted by g and referred
to as the quantity of interest. Due to process variation, the value of g deviates
from the nominal one, and it can be different at different locations on thewafer.
Direct measurement of this parameter is assumed to be impractical.

The goal is to develop a framework for identifying the on-wafer distribution
of the quantity of interest g with the following properties: (a) low measure-
ment costs, (b) robustness to measurement noise, (c) ability to accommodate
prior knowledge about g, (d) ability to assess the credibility of the collected
data and the corresponding predictions, and (e) high computation speed.

42

4.4. Previous Work

4.4 PreviousWork

There are a number of related studies that wewould like to highlight. Bayesian
inference, which is briefly introduced in Appendix A.3, is utilized in [123]
for identifying the optimal set of locations on the wafer where the parameter
under consideration should be measured in order to characterize it with the
maximal accuracy. The expectation-maximization algorithm is considered in
[93] in order to estimate missing test measurements. In [84], the authors
consider an inverse problem focused on the inference of power consumption
based on transient temperature maps by means of Markov random fields. An-
other temperature-based characterization of power is developed in [78]where
a genetic algorithm is employed for the reconstruction of the power model.

It should be noted that the procedures proposed in [93, 123] operate on
direct measurements, meaning that the output is the same quantity as the one
beingmeasured. In particular, these procedures rely heavily on the availability
of adequate test structures on the dies and are practical only for secondary
quantities affected by process variation, such as delays and currents, but not
for the primary ones, such as various physical dimensions. Consequently, they
often lead to excessive costs and have a limited range of applicability. On the
other hand, the approaches given in [78, 84], which concentrate on the power
consumption of a single die, are not concerned with process variation.

4.5 Proposed Solution

In order to achieve the established goal, wemakeuse of indirectmeasurements.
Specifically, instead of g, we measure an auxiliary parameter h, which we refer
to as the quantity of measurement. The observations of h are then processed
viaBayesian inference (seeAppendixA.3) in order to derive the on-wafer distri-
bution of g. The quantity h is chosen such that (a) h is convenient and cheap to
be measured; (b) h depends on g, which is signified by h = f(g); and (c) there
is a way to compute h given g. The last requirement means that f should be
known. However, f does not have to be specified analytically, since our frame-
work treats f as a “black box.” For example, f can be a piece of code.

Without loss of generality, we adhere to the following convention. Each
die is a potential measurement site, and n̂d < nd denotes the number of those
sites that are actually measured. Each site comprises np measurement points,
and there are ns data instances per point. For instance, in the example given
in Section 4.2, an observation at a site is a temperature profile Q, which is a
matrix capturing the temperatures of np processing elements at ns moments
in time as defined in Equation 2.2. Denote the collected data byH and assume
that the locations of the measurement points are recorded along withH .

It is worth noting that, if f is the identity function (that is, h = f(g) = g),
the proposed technique focuses primarily on the reconstruction of anymissing

43

4. Analysis of Process Uncertainty

Post-
processing

Measurement
procedure

Optimization
procedure

Sampling
procedure

Statistical
model

Data model

Stage 1

Stage 2

Stage 3

Stage 4

Observations

Statistics about the
quantity of interest

Figure 4.3: Overview of the proposed solution for characterizing process vari-
ation across silicon wafers

observations in H , that is, on the unobserved sites on the wafer. From this
standpoint, our approach is a generalization of those developed in [93, 123].

In the rest of this section, we present our framework for characterizing pro-
cess variation. The technique revolves around Bayes’s theorem [42]

p(u|H) ∝ p(H|u)p(u). (4.1)

In our context, the theorem relates the posterior density function p(u|H) of u
givenH with the likelihood function p(H|u) ofH given u and the prior density
function p(u) of u; these concepts are introduced in Appendix A.3, and they
will be discussed further in the following. The framework is divided into four
major stages depicted in Figure 4.3. Stage 1 is the data-harvesting stage where
the designer collects a set of observations of the quantity of measurement h,
thereby forming the data set H . At Stage 2, we perform an optimization pro-
cedure that is designed to assist the sampling procedure at Stage 3. The latter
produces a collection of samples of the quantity of interest g, such as the effec-
tive channel length, denoted byG. This data setG is then processed at Stage 4
in order to estimate the desired statistics about g, such as the probability of g
being smaller than a certain threshold; recall the example in Section 4.2.

It can be seen in Figure 4.3 that Stage 2 and Stage 3 actively communicate
with the two models shown on the right-hand side, which are called the data
model and statistical model. We begin by elaborating on these models.

44

4.5. Proposed Solution

4.5.1 Data Model

The data model relates the quantity of interest g with the quantity of measure-
ment h, which is denoted as follows:

h = f(g).

The function f depends on the choice of h and is specified by the designer. The
data model is utilized in order to predict the values of h at the same measure-
ment sites, at the same measurement points, and with the same number and
meaning of data instances as the ones in H obtained at Stage 1. The result-
ing data are stacked into a single vector denoted by h ∈ Rn̂dnpns . Let also
ĥ ∈ Rn̂dnpns be a stacked version of the data in H such that the respective
elements of h and ĥ correspond to the same locations on the wafer.

In order to acquire a better understanding of the data model, let us return
to the example given in Section 4.2. In this case, g stands for the effective chan-
nel length, and h for the temperature profileQ corresponding to a fixed work-
load. The datamodel can be roughly divided into two transitions: (a) from the
effective channel length g to the static power consumedby the platformat hand
and (b) from this static power to the corresponding temperature profile h. At
this point, it is worth recalling the power model presented in Section 2.2. The
first transition is due to the dependence of the leakage current on the effective
channel length, which is implicitly present in Equation 2.4. The transition can
then be made by means of the model shown in Equation 2.4 or any of its vari-
ations; see, for instance, [12, 58, 103, 121]. In particular, an adequate model
of static power can be constructed via fitting to spice simulations of reference
electrical circuits. The only requirement for such a model is that it should be
parameterized by g. In addition, it can be parameterized by temperature in
order to take account of the power-temperature interdependence described
in Section 2.2. The second transition is made by combining the static power
component with the dynamic power that corresponds to the workload being
considered. The resulting total power and the relevant temperature-related
information—such as the floorplan and thermal parameters of the platform—
are fed to a temperature simulator in order to acquire the corresponding tem-
perature h, which is discussed in detail in Chapter 3.

4.5.2 Statistical Model

Once the wafer has been fabricated, the values of g across the wafer are fixed;
however, they remain unknown to the designer. In order to infer them, we
employ the model developed in the current subsection, which can also be seen
in Figure 4.4. The development consists of the five steps described below.

Step 1 is to assign an adequate model to the unknown g. We model g as
a Gaussian process [92], since (a) it is flexible in capturing the variation pat-
terns induced by the fabrication process, (b) it is computationally efficient, and

45

4. Analysis of Process Uncertainty

Posterior
distribution

Model of the
quantity

Model order
reduction

Likelihood
function

Prior
distribution

Prior knowledgeStep 1

Step 2

Step 3

Step 4

Step 5

Figure 4.4: Statistical model of the proposed solution for characterizing pro-
cess variation across silicon wafers

(c) Gaussian distributions are often adequatemodels of uncertainty due to pro-
cess variation [58, 93, 103]. The model is denoted by

g|ug ∼ Gaussian Process(µ, v) (4.2)

where µ : R2 → R and v : R2 ×R2 → R are the mean function and covariance
function of g, respectively, which take locations on the wafer as arguments.
The notation also indicates that g depends on a set of parameters ug , which
we shall identify later on. Prior to taking any measurements, g is assumed to
be spatially unbiased. Therefore, we let µ be a single location-independent
parameter µg , which means that µ(r) = µg for any r ∈ R2. The covariance
function v is chosen to be the following:

v(r1, r2) = σ2
g k(r1, r2) (4.3)

for r1 ∈ R2 and r2 ∈ R2 where

k(r1, r2) = w kSE(r1, r2) + (1− w)kOU(r1, r2) (4.4)

is the correlation function, and

kSE(r1, r2) = exp

(
−∥r1 − r2∥22

ℓ2SE

)
and

kOU(r1, r2) = exp

(
−|∥r1∥2 − ∥r2∥2|

ℓOU

)

46

4.5. Proposed Solution

are the squared-exponential and Ornstein–Uhlenbeck kernels [92], respec-
tively. In these formulae, σ2

g is the variance of g, w ∈ [0, 1] is a weight coef-
ficient, ℓSE > 0 and ℓOU > 0 are so-called length-scale parameters, and ∥ · ∥2
stands for the Euclidean distance. The choice of v is based on the observa-
tions of the correlation structures induced by the fabrication process [12, 15].
Specifically, kSE imposes similarities on locations that are close to each other
on the wafer, and kOU imposes similarities on locations that are at the same
distance from the center of the wafer. The parameters ℓSE and ℓOU control the
extent of these similarities, that is, the range where the correlation between
two locations is significant. Although all the above parameters of g can be in-
ferred from data, for simplicity, we focus only on µg and σ2

g . The rest of the
parameters—namely w, ℓSE, and ℓOU—are assumed to be determined prior to
our analysis based on knowledge of the variation patterns that are typical for
the fabrication process being considered; see [77] and the references therein.

Step 2 is to make the above model of g computationally tractable. The
model is an infinite-dimensional object, as it characterizes a continuumof loca-
tions. For practical computations, it should be reduced to a finite-dimensional
one. First, g is discretizedwith respect to the union of two sets of locations. The
first one is composed of the n̂dnp points where the observations inH are made
(n̂d measurement sites with np measurement points each), and the other one
of the locations where the designer wishes to characterize g. For simplicity,
assume that the designer is interested in all the sites, which results in ndnp lo-
cations in total. Let g ∈ Rndnp store the values of g at these locations. Second,
the dimensionality of the problem is reduced further via the Karhunen–Loève
(kl) decomposition, which is introduced in Appendix A.4. Concretely, we per-
form the transformation shown in Equation A.7 with respect to the correlation
matrix of g computed via Equation 4.4. The result is

g = µg1+ σgUΛ̃
1
2 z (4.5)

where 1 = (1, . . . , 1) ∈ Rndnp , and z = (zi) ∈ Rnz is a vector of independent
random variables that obey the standard Gaussian distribution. The number
nz is the final dimensionality of the model of g; typically, nz ≪ ndnp. In addi-
tion, the parameters ug in Equation 4.2 are now known: ug = {z, µg, σ

2
g}; see

Figure 4.4. The model is now ready for practical computations.
Step 3 is to specify the likelihood function in Equation 4.1, which is where

the observed information is taken into account; see Appendix A.3. In our case,
the observed information is the measurements H stacked into ĥ as described
in Section 4.5.1. Since the measurement process is not perfect, we also have
to take measurement noise into consideration. To this end, the observed ĥ is
assumed to deviate from the data model’s prediction h as follows:

ĥ = h+ ϵ

where ϵ is an n̂dnpns-dimensional vector of noise, which is typically assumed
to be white Gaussian noise [77, 92]. Without loss of generality, the noise is

47

4. Analysis of Process Uncertainty

assumed to be independent of g and to have the same magnitude for all mea-
surements. Hence, the model of the noise is as follows:

ϵ|σ2
ϵ ∼ Gaussian(0, σ2

ϵ I)

where σ2
ϵ is the variance of the noise. At this point, all the parameters of the

inference are identified, and they are u = ug ∪ {σ2
ϵ } = {z, µg, σ

2
g , σ

2
ϵ }; see

Figure 4.4. Taking the above into account, we obtain

ĥ|u ∼ Gaussian(h, σ2
ϵ I). (4.6)

The density function of this distribution is the likelihood p(H|u) of our statis-
tical model, which is the first element of the posterior in Equation 4.1.

Step 4 is to decide on the second element of the posterior in Equation 4.1,
that is, on the prior p(u). We put the following priors on the parameters in u:

z ∼ Gaussian(0, I),

µg ∼ Gaussian(µ0, σ
2
0),

σ2
g ∼ Scaled Inverse χ2(nug, τ

2
g), and

σ2
ϵ ∼ Scaled Inverse χ2(nuϵ, τ

2
ϵ).

(4.7)

The prior of z is due to the decomposition in Equation 4.5. The other three pri-
ors, that is, a Gaussian and two scaled inverse chi-squared distributions, are a
common choice for a Gaussian model whose mean and variance are unknown.
The parameters µ0, τ2g , and τ

2
ϵ represent the presumed values of µu, σ2

g , and
σ2
ϵ , respectively, and are set by the designer based on prior knowledge of the

technological process and measurement equipment. The parameters σ0, nug ,
and nuϵ reflect the precision of this information. When the prior knowledge is
weak, less specific priors can be considered [42]. Finally, p(u) in Equation 4.1
is obtained by multiplying the densities of the priors in Equation 4.7.

Step 5 is to calculate the posterior p(u|H) in Equation 4.1. To this end,
the likelihood function p(H|u), which is the density of the distribution shown
in Equation 4.6, and the prior p(u), which is the product of the densities of
the distributions shown in Equation 4.7, are put together. The density of the
resulting posterior distribution is as follows:

p(u|H) ∝ p(ĥ|z, µg, σ
2
g , σ

2
ϵ)p(z)p(µg)p(σ

2
g)p(σ

2
ϵ). (4.8)

Provided that there is a way to draw samples from Equation 4.8, g can be read-
ily analyzed, as we shall see in Section 4.5.5. The problem, however, is that di-
rect sampling of the posterior is difficult due to the data model involved in the
likelihood function via h; see Equation 4.6. In order to circumvent this prob-
lem, we utilizeMarkov chainMonte Carlo sampling and, more specifically, the
Metropolis–Hastings algorithm [42], which is outlined in Appendix A.3. The
algorithm operates on an auxiliary distribution called the proposal distribu-
tion. The construction of an adequate proposal is discussed next.

48

4.5. Proposed Solution

4.5.3 Optimization Procedure

In this subsection, we describe the objective of Stage 2 in Figure 4.3. Although
the requirements for the proposal distribution are mild, it is often difficult
to pick an efficient proposal, that is, a proposal that would yield a good ap-
proximation with as few evaluations of the posterior—and thus of the data
model in Section 4.5.1—as possible. This choice is especially difficult in high-
dimensional problems, and our problem—involving around 30 parameters, as
we shall see in Section 4.6—is one them. Therefore, a careful construction of
the proposal is an essential component of the proposed framework.

A common technique for constructing a high-quality proposal is to opti-
mize the posterior given in Equation 4.8. Specifically, we seek a value u∗ of u
that maximizes Equation 4.8 and hence has the maximum posterior probabil-
ity. In addition, we calculate the negative of the Hessian matrix at u∗, which
is called the observed information matrix and denoted by J; see the output
of Stage 2 in Figure 4.3. Using u∗ and J, we can construct a proposal that
allows the Metropolis–Hastings algorithm (a) to start producing samples di-
rectly from the desired regions of high probability and (b) to explore those
regions more rapidly. The usage of u∗ and J is explained next.

4.5.4 Sampling Procedure

Let us turn to Stage 3 in Figure 4.3. In order to construct an adequate pro-
posal and utilize it for sampling, we have at our disposal u∗ and J from Stage 2.
A commonly used proposal is a multivariate Gaussian distribution where the
mean is the current location of the chain of samples started at u∗, and the
covariance matrix is the inverse of J [42]. In order to speed up the sampling
process, wewould like tomake use of parallel computing. The aforementioned
proposal, however, is purely sequential, since the mean for the next sample
draw is dependent on the previous sample. Therefore, we appeal to a variant of
theMetropolis–Hastings algorithm known as the independence sampler [42].
In this case, a typical choice of the proposal is a multivariate t-distribution in-
dependent of the current position of the chain as follows:

u ∼ tnu(u
∗, α2J−1) (4.9)

where u∗ and J are as in Section 4.5.3, nu is the number of degrees of freedom,
and α is a tuning constant controlling the standard deviation of the proposal.
Now sampling the proposal in Equation 4.9 and evaluating the posterior in
Equation 4.8 can be done in parallel. The obtained samples are then accepted
or rejected as in the usual Metropolis–Hastings algorithm.

Having completed the sampling procedure, we obtain a collection of sam-
ples of the parameterization u = {z, µg, σ

2
g}. The first portion of the samples

is typically discarded as being unrepresentative; this portion is known as the

49

4. Analysis of Process Uncertainty

burn-in period. The preserved samples of u are then passed through Equa-
tion 4.5 in order to compute samples of g, which are ndnp-dimensional. De-
note the corresponding set of samples by G and let its cardinality be nω .

4.5.5 Post-Processing

At Stage 4 in Figure 4.3, using G, the designer computes the desired statistics
about the quantity of interest g, such as the most probable value of g at some
location on the wafer and the probability of a certain area on the wafer being
defective. These computations are performed in the same way as it is typically
done when Monte Carlo (mc) sampling is utilized. Specifically, they reduce to
the estimation of expected values with respect to the posterior distribution of
u given in Equation 4.8: in order to calculate a certain quantity dependent on
g, one evaluates it for each sample in G and then takes the average value.

The strength of the Bayesian approach to inference starts to shine when
one is interested in assessing the trustworthiness of the measured data and
thus the credibility of estimates and decisions based on these data. Such an as-
sessment can be readily undertaken using our framework, since the delivered
posterior contains all the necessary information about the quantity of interest
g. As discussed in Section 4.2, this is especially helpful in decision-making.

4.6 Experimental Results

In this section, we assess our framework for characterizing process variation
presented in Section 4.5. All the experiments are conducted on a gnu/Linux
machine equipped with an Intel Core i7 2.66 ghz and 8 gb of ram. All the
configuration files used in the experiments are available online at [17].

Our goal is to infer the effective channel length g from temperature h. Such
a high-level parameter as temperature constitutes a challenging task for the
inference of such a low-level parameter as the effective channel length, which
implies a rigorous assessment of the proposed technique. The performance
of our approach is expected only to increase when the auxiliary parameter h
is closer to the target parameter g with respect to the data model h = f(g)

described in Section 4.5.1. For instance, such a closer quantity h could be the
leakage current, but this might not always be the most preferable parameter
to measure. Lastly, let us note that the chosen effective channel length is an
important target, as it is strongly affected by process variation and consider-
ably impacts power consumption and heat dissipation [12, 58, 59, 103]. It also
affects other process-related parameters, such as the threshold voltage.

We first describe the default configuration, which will be adjusted later on
according to the purpose of each particular experiment. We consider a 45-nm
technological process. The diameter of the wafer is 20 dies, and the total num-
ber of dies nd is 316. The number of measured dies n̂d is 20, and these dies
are chosen by an algorithm that strives for even coverage of the wafer. The

50

4.6. Experimental Results

fabricated platform has four processing elements, and they are the points at
which measurements are taken; that is, np = 4. The floorplan of the platform
is constructed in such a way that the processing elements form a regular grid.
The dynamic power profiles involved in the experiments are based on simula-
tions of applications randomly generated by tgff [34]. The model of static
power parameterized by temperature and the effective channel length is con-
structed by fitting to spice simulations of reference electrical circuits that are
composed of bsim4 devices [106] configured according to the 45-nm ptm hp
model [108]. The construction of thermal rc circuits is delegated to HotSpot
[100], and temperature analysis is performed as described in Section 3.2.2.
The sampling interval of power and temperature profiles is 1 ms.

The input data set H is obtained as follows: (a) draw a sample of g from
a Gaussian distribution with a mean of 17.5 nm (in accordance with the tech-
nological process under consideration [108]) and a covariance function equal
to Equation 4.3 with a standard deviation of 2.25 nm; (b) perform one fine-
grained temperature simulation for each of the n̂d dies selected for measure-
ment; (c) thin the obtained temperature profiles so that each has only ns,
which is 20 by default, evenly spaced moments in time; and (d) perturb the
resulting data using white Gaussian noise with a standard deviation of 1°C.

Let us turn to the statistical model in Section 4.5.2 and summarize the
intuition behind the model’s parameters and the process by which they are
assigned. In the correlation function given in Equation 4.4, the weight pa-
rameter w and the two length-scale parameters ℓSE and ℓOU should be set ac-
cording to the variation patterns that are typical for the fabrication process at
hand [12, 15]; we set w to 0.7 and ℓSE and ℓOU to half the radius of the wafer.
The threshold parameter η of the model-order-reduction procedure shown in
Equation A.6 and utilized in Equation 4.5 should be set high enough in or-
der to preserve a sufficiently large portion of the variance of the data, thereby
keeping themodel sufficiently accurate; we set it to 0.99. The resulting dimen-
sionality nz of z in Equation 4.5 is found to be 27 or 28. The parameters µ0 and
τg of the prior given in Equation 4.7 are specific to the technological process
under consideration; we set µ0 to 17.5 nm and τg to 2.25 nm. The parameters
σ0 and nug used in Equation 4.7 determine the precision of the information
about µ0 and τg and are set according to the beliefs of the designer; we set
σ0 to 0.45 nm and nug to 10. The latter can be thought of as the number of
imaginary observations that the choice of τg is based on. The parameter τϵ in
Equation 4.7 represents the precision of the equipment utilized for collecting
H and can be found in the technical specification of that equipment; we set τϵ
to 1°C. The parameter nuϵ in Equation 4.7 has the same interpretation as nug;
we set it to 10 as well. In Equation 4.9, nu and α are tuning parameters, which
are configured based on experiments; we set nu to 8 and α to 0.5. The num-
ber of sample draws is another tuning parameter, which we set to 104. The
first half of these samples is ascribed to the burn-in period mentioned in Ap-
pendix A.3, and the second one constitutesG; in this case, nω = 5×103. In the

51

4. Analysis of Process Uncertainty

Table 4.1: Computational speed and accuracy of the proposed solution with
respect to the number of measurement sites

Number of sites 1 10 20 40 80 160
Optimization (min) 0.41 2.49 3.34 4.59 7.33 10.29
Sequential (min) 2.40 3.99 4.60 5.79 8.49 12.96
Total (min) 2.81 6.47 7.94 10.38 15.81 23.25
Parallel (min) 0.61 1.02 1.18 1.51 2.16 3.62
Total (min) 1.02 3.50 4.52 6.10 9.49 13.91
nrmse (%) 30.49 4.40 3.42 1.09 0.85 0.67

optimization described in Section 4.5.3, we use the quasi-Newton algorithm
[87]. For parallel computations, we utilize four computational cores.

In order to ensure that the experimental setup is adequate, we first perform
a detailed inspection of the results obtained for one particular example with
the default configuration. The true and inferred distributions of the quantity of
interest are shown in Figure 4.1 where the normalized root-mean-square error
(nrmse) is below 2.8%, and the absolute error is bounded by 1.4 nm, which
suggests that our framework produces a close match to the true value of the
quantity. We also investigate the behavior of the constructed Markov chains
and the quality of the proposal distribution. All the observations indicate that
the optimization and sampling procedures are properly configured.

In the following subsections, we consider the experimental setup described
above and alter a single parameter at a time in order to investigate its impact.
Specifically, we change (a) the number of measurement sites n̂d, which is 20
by default; (b) the number of measurement points per site np, which is 4 by de-
fault; (c) the number of data instances per pointns, which is 20 by default; and
(d) the standard deviation of measurement noise σϵ, which is 1°C by default.

4.6.1 Number of Measurement Sites

Let us vary the number of measured sites or dies n̂d. The scenarios being con-
sidered are 1, 10, 20, 40, 80, and 160 dies. The obtained results are shown
in Table 4.1. In this and the following tables, we report the optimization time
and sampling time separately, which correspond to Stage 2 and Stage 3 in Fig-
ure 4.3, respectively. In addition, the sampling time is given for two cases: se-
quential and parallel computing, which is followed by the total time and result-
ing error. The computation time of the post-processing stage, Stage 4, is not
given, as it is negligibly small. The sequential sampling time is the most rep-
resentative indicator of the computational complexity of the proposed frame-
work, since the number of samples is always fixed, and there is no paralleliza-
tion. Therefore, we refer to this value in most of the discussions given below.

52

4.6. Experimental Results

Table 4.2: Computational speed and accuracy of the proposed solution with
respect to the number of measurement points

Number of points 2 4 8 16 32
Optimization (min) 2.67 3.34 5.20 7.37 13.85
Sequential (min) 3.71 4.60 6.03 8.92 14.77
Total (min) 6.38 7.94 11.23 16.29 28.62
Parallel (min) 0.98 1.18 1.58 2.51 5.30
Total (min) 3.65 4.52 6.78 9.88 19.15
nrmse (%) 4.71 3.42 3.68 2.73 1.94

It can be seen in Table 4.1 that the more data the proposed framework
needs to process, the longer the execution time becomes, which is reasonable.
The trend, however, is modest: when n̂d is doubled, the computation time in-
creases by less than a factor of two. Regarding accuracy, the error decreases
definitively and drops below 4% when around 20 sites are measured, which is
only 6%–7% of the total number of dies on the wafer under consideration.

4.6.2 Number of Measurement Points

In this subsection, we consider five platforms with different numbers of pro-
cessing elements or, equivalently, measurement points np. The scenarios be-
ing considered are 2, 4, 8, 16, and 32 processing elements. The results are
summarized in Table 4.2. The computation time grows along with np. This is
expected, since the granularity of the temperature model is bound to the num-
ber of processing elements: each processing element contributes four thermal
nodes to the thermal rc circuit that temperature analysis is based on; recall
Section 2.3. Hence, temperature analysis becomes more expensive. Neverthe-
less, even for large examples, taking into account the complexity of the infer-
ence procedure and the yielded accuracy, the time requirement is readily ac-
ceptable. An interesting observation can be made with respect to the nrmse:
the error tends to decrease as np grows. The reason is that, with eachmeasure-
ment point,H delivers more information for the inference to work with.

4.6.3 Number of Data Instances

Nowwe change thenumber of data instancesns, which, in this case, is the num-
ber of moments in time captured by temperature profiles. The scenarios being
considered are 1, 10, 20, 40, 80, and 160moments. The results are aggregated
in Table 4.3. It can be seen that the growth in computation time is relatively
small. One might expect this growth due to ns to be the same as the one due
to np, since, technically, the influence of np and ns on the dimensionality ofH

53

4. Analysis of Process Uncertainty

Table 4.3: Computational speed and accuracy of the proposed solution with
respect to the number of data instances

Number of instances 1 10 20 40 80 160
Optimization (min) 1.12 3.02 3.34 3.62 3.64 4.20
Sequential (min) 2.40 4.38 4.60 4.67 4.80 4.97
Total (min) 3.52 7.40 7.94 8.29 8.44 9.16
Parallel (min) 0.62 1.13 1.18 1.22 1.25 1.30
Total (min) 1.74 4.16 4.52 4.84 4.89 5.50
nrmse (%) 7.48 2.72 3.42 1.83 2.34 1.32

Table 4.4: Computational speed and accuracy of the proposed solution with
respect to the standard deviation of noise

Deviation of noise (°C) 0.00 0.50 1.00 2.00
Optimization (min) 5.08 3.73 3.34 3.19
Sequential (min) 4.76 4.70 4.60 4.71
Total (min) 9.84 8.43 7.94 7.90
Parallel (min) 1.19 1.17 1.18 1.18
Total (min) 6.27 4.91 4.52 4.37
nrmse (%) 0.02 2.71 3.42 4.05

is identical; recall that ĥ ∈ Rn̂dnpns . However, the meanings of np and ns are
completely different, and hence the ways theymanifest themselves in the infer-
ence algorithm are also different, which explains the discordant figures shown
in Table 4.2 and Table 4.3. The nrmse in Table 4.3 has a decreasing trend;
however, this trend is less steady than the ones noted before. The finding can
be explained as follows. The temporal distribution of the moments in time
that are present in H changes, since these moments are kept evenly spaced
across the time spans of the corresponding applications. Some moments can
be more informative than others. Consequently, more or less representative
samples can be accumulated in H , helping or misleading the inference. Ad-
ditionally, we can conclude that a larger number of spatial measurements is
more advantageous than a larger number of temporal measurements.

4.6.4 Deviation of Measurement Noise

In this subsection, we vary the standard deviation of measurement noise,
which corrupts H . The cases being considered are 0°C, 0.5°C, 1°C, and 2°C
[78]. Note that the corresponding prior in Equation 4.7 is kept unchanged.
The results are given in Table 4.4. It can be seen that the sampling time is ap-

54

4.7. Conclusion

proximately constant. However, we observe an increase in the optimization
time when the level of noise decreases, which can be ascribed to greater oppor-
tunities for perfection for the optimization procedure. Another observation
revealed by this experiment is that, in spite of the fact that the inference oper-
ates on indirect and incomplete data, a thoroughly calibrated piece of equip-
ment can considerably improve the quality of prediction. However, even with
a noise of 2°C—meaning that measurements are dispersed over a wide band
of 8°C with a probability of more than 0.95—the nrmse is still only 4%.

4.6.5 Sequential and Parallel Sampling

Lastly, we elaborate on the sequential and parallel sampling strategies. In the
sequential Metropolis–Hastings algorithm, the optimization time is typically
smaller than the time needed for drawing posterior samples. The situation
changes when parallel computing is utilized. When four cores are working
in parallel, the sampling time decreases by a factor of 3.81 on average, which
indicates good parallelization properties of the chosen sampling strategy. The
overall speedup ranges from 1.49 to 2.75 with an average value of 1.77, which
can be pushed even further by employing more computational cores.

4.7 Conclusion

In this chapter, we have presented a framework for characterizing process vari-
ation across semiconductor wafers based on indirect measurements. The tech-
nique has been exposed to extensive experiments, and the obtained results
have shown the computational efficiency and accuracy of our approach.

The presented framework is capable of quantifying primary parameters af-
fected by process variation, such as the effective channel length, which is in
contrast to the former techniques where only secondary parameters are con-
sidered, such as the leakage current. Instead of taking direct measurements
of the quantity of interest, we employ Bayesian inference in order to draw jus-
tifiable conclusions based on indirect observations, such as temperature mea-
surements. Our approach has low costs, since it need not require deployment
of expensive test structures on the dies, and in scenarios where such structures
are already available, it might require engaging only a small subset of them.

Finally, wewould like to emphasize that, although the proposed framework
has been demonstrated by considering the effective channel length and tem-
perature, it can be readily utilized for analyzing any other quantity of interest
based on any other quantity of measurement provided that the latter depends
on the former, and that a model of this dependence is available.

55

5
Analysis and Design under
Process Uncertainty

In this chapter, we shift our attention from characterizing process variation
to analyzing its destructive implications for high-level characteristics of elec-
tronic systems so that these implications can be taken into consideration.

5.1 Introduction

As discussed in Section 1.1.1, process variation has to be addressed by the de-
signer. In order to assist the designer, we present a framework that allows
one to propagate uncertainty stemming from process variation through the
system under development and thereby investigate and take account of its im-
pact on the system’s behavior. In particular, it enables power and temperature
analysis as well as reliability analysis to be performed in such a way that pro-
cess variation is adequately considered. In the case of reliability analysis, for
example, our framework delivers a reliability function—founded on the basis
of well-established reliability models—with a computationally efficient prob-
abilistic parameterization. The proposed approach is demonstrated by con-
sidering a number of problems. In particular, we analyze systems with peri-
odic workloads that suffer from thermal cycling and construct and execute a
design-space-exploration procedure aimed at minimizing the expected energy
consumption of the system under a number of probabilistic constraints.

5.2 Motivational Example

Consider a quad-core architecture whose leakage current is uncertain to the
designer due to its dependence on a number of process parameters that are af-
fected by process variation. Assume first that these parameters have nominal
values. We can then simulate the system under a certain workload and observe

57

5. Analysis and Design under Process Uncertainty

Time (ms)

T
em

pe
ra

tu
re

 (
°C

)

Nominal
Mild
Severe

0 200 400100 300 500
50

70

90

100

80

60

Figure 5.1: Example of temperature fluctuations due to process variation

the corresponding temperature profile. The result is depicted in Figure 5.1 by
a blue line, which corresponds to the temperature of one of the processing ele-
ments; the experimental setup will be detailed in Section 5.8 and Section 5.9.
Note that the temperature is always below 90°C. Let us now assume amild de-
viation in the parameters from their nominal values in the direction that causes
the leakage current to be higher, and let us perform temperature analysis once
again. The result is the orange line in Figure 5.1; the maximum temperature
is approaching 100°C. Finally, we repeat the experiment considering a severe
deviation in the parameters in the same direction and observe the green line
in Figure 5.1; in this case, the maximum temperature is almost 110°C.

Suppose now that the designer is tuning a solution constrained by a maxi-
mum temperature of 90°C, and that the designer is guided exclusively by the
nominal values of the process parameters. In this scenario, even with mild de-
viations, the electrical circuits might be burnt. Another path that the designer
might take is to design the system for severe conditions. This scenario, how-
ever, could easily lead to a system that is too conservative and overdesigned.

The conclusion drawn from the example given above is that the presence
of uncertainty has to be adequately addressed in order to pursue efficiency and
robustness. Nevertheless, the majority of the literature related to power, tem-
perature, and reliability analysis of electronic systems ignores this important
aspect; see, for instance, [86, 89, 91, 109, 121]. This negligence is also present
in the analysis and optimization described in Chapter 3. Therefore, the goal of
this chapter is to eliminate this concern in the case of process variation.

5.3 Problem Formulation

Assume the system model given in Section 2.1. Suppose that the system de-
pends on anumber of process parameters that are uncertain at the design stage.
Once the fabrication process yields a particular outcome, the process parame-
ters take certain values and stay unchanged thereafter. However, these values

58

5.4. Previous Work

are different for different fabricated chips, and they varywithin each fabricated
chip, since, in general, the variability due to process variation is not uniform.
As emphasized earlier, this variability leads to such phenomena as deviations
in power from the nominal values and, therefore, to deviations in temperature
from the temperature corresponding to the nominal power consumption.

Each process parameter is a characteristic of a single transistor; consider,
for instance, the effective channel length. Therefore, each device in the electri-
cal circuit can potentially have a different value for this parameter. The process
parameters can then be modeled as a stochastic process

u : Ω× R2 → Rnu

that is defined on a suitable probability space (Ω,F ,P) (see Appendix A.2) and
a two-dimensional plane and takes values in Rnu where nu is the number of
the process parameters. For practical computations, the stochastic process is
discretized, and each processing element is modeled via a finite set of random
variables. The uncertain parameters of the problem are then defined as

u = (ui)
nu
i=1 : Ω→ Rnu

where the union of all random variables of all processing elements is arranged
into a single random vector, and nu is redefined to be the number of elements
that this vector has. Given the above setting, our goal is twofold as follows.

First, we are to develop a system-level framework for transient temperature
(and hence power) analysis as well as dynamic steady-state analysis of elec-
tronic systems where power consumption and heat dissipation are stochastic
due to their dependency on the parametersu. The designer is required to spec-
ify (a) the probability distribution of u and (b) the dependency of the system’s
power consumption on u, which can be given as a “black box.” The framework
should provide the designer with tools for analyzing the system under a given
workload—without imposing constraints on the nature of this workload—and
calculating the corresponding stochastic power P and stochastic temperature
Q profiles with a desired level of accuracy and at low computational costs.

Second, taking the effect of process variation on power and temperature
into consideration, we are to find the reliability function of the system and to
develop a computationally efficient design-space-exploration scheme exploit-
ing the proposed techniques for power, temperature, and reliability analysis.

5.4 PreviousWork

As we elaborate in Section 1.2 and Section 1.5, uncertainty-unaware tech-
niques are inadequate, and sampling methods—including Monte Carlo (mc)
sampling—as a means of uncertainty quantification are computationally ex-
pensive. In order to overcome the limitations of deterministic approaches and,

59

5. Analysis and Design under Process Uncertainty

at the same time, to eliminate or at leastmitigate the computational costs asso-
ciatedwith direct sampling, a number of probabilistic techniques have been in-
troduced, which are discussed below. We are particularly interested in power
and temperature and, therefore, pay special attention to these metrics in the
exposition. Since the static component of power consumption is influenced by
process variation the most, due mainly to the leakage current, the techniques
discussed below focus primarily on the variability in this component.

A solely power-targeted but temperature-aware solution is proposed in
[11] where the working force of the analysis ismc sampling with partially pre-
computed data. A learning-based approach is presented in [59] in order to
estimate the maximum temperature under the static steady-state condition;
recall Section 3.3. Temperature-related issues originating from process varia-
tion are also considered in [58] where a statistical model of the static steady-
state temperature is derived based on the linearity of Gaussian distributions
and time-invariant systems. A stochastic temperature simulator targeted at
the static steady state is developed in [51] using the polynomial chaos (pc)
decomposition and the continuous Karhunen–Loève (kl) decomposition; see
Appendix A.4 and Appendix A.7. A stochastic collocation [68, 120] approach
to static steady-state analysis is presented in [69], which relies on the kl de-
composition and on Newton polynomials for interpolation. In [99], pc expan-
sions are employed in order to estimate the static power of entire chips. The
kl decomposition is utilized in [6] for calculating static power. Static power
is also quantified in [7] via the pc and kl techniques. The same combination
of tools is employed in [117] and [44] in order to analyze the response of in-
terconnect networks and power grids, respectively, under process variation.

The last five of the above techniques, that is, [6, 7, 44, 99, 117], performonly
probabilistic power analysis and ignore the interdependence between power
and temperature described in Section 2.2. The other ones are temperature-
related approaches, but none of them attempts to tackle probabilistic transient
analysis, that is, to compute the probability distributions of power and temper-
ature that evolve over time. However, such transient curves are of practical
importance. First, certain procedures cannot be undertaken without knowl-
edge of time-dependent variations; one example of this is reliability optimiza-
tion concerned with thermal-cycling fatigue, which is discussed in Section 3.6.
Second, the static steady-state assumption that is considered, for instance, in
[51, 58, 59, 69] can rarely be justified, since power is not invariant in reality.

In addition, one frequently encounters the assumption that power and tem-
perature follow a priori known probability distributions; Gaussian and log-
normal distributions are popular choices; see, for instance, [6, 58, 103]. How-
ever, this assumption often fails in practice—which is also noted in [58] re-
garding the normality of the leakage current—due to (a) the nonlinear depen-
dence of power on process parameters and (b) the nonlinear interdependence
between power and temperature. In order to illustrate this, let us return to
the example given in Section 5.2 and assume the widespread Gaussian model

60

5.4. Previous Work

of the effective channel length. We can then simulate the example 104 times
and apply the Jarque–Bera test of normality to the collected temperature sam-
ples as well as to the samples obtained by passing the temperature samples
through the log transformation. We observe that the null hypothesis, which
avers that the data are from an unspecified Gaussian distribution, is firmly re-
jected in both cases at a significance level of 5% [90]. This means that, if the
null hypothesis were true, the probability of observing these data would be
less than 0.05. Consequently, the distribution is very unlikely to be Gaussian
or log-normal, which can also be seen in Figure 5.6 shown in Section 5.9.

One can observe in the above discussion that the overwhelming majority
of the literature related to temperature in the presence of process variation
relies on static steady-state temperature analysis, which is inadequate in prac-
tice, and the other two types of temperature analysis—transient analysis and
dynamic steady-state analysis—are not given enough attention. However, as
discussed earlier, their availability is of practical importance to the designer.

Let us now discuss reliability analysis. Reliability analysis is probabilistic
by nature. However, certain components of a reliability model can be treated
as either stochastic or deterministic, depending on the phenomena that the
model is designed for. Temperature is an example of such a component: it can
be considered deterministic if the effect of process variation on temperature
is neglected, and it can be considered stochastic if this effect is accounted for.
The former scenario is the one that is typically addressed in the literature re-
lated to reliability. For instance, the reliability model proposed in [118] has a
treatment of process variation; however, temperature is included in the model
as a deterministic quantity. In [27], a design methodology that minimizes
energy consumption of and temperature-induced wear on multiprocessor sys-
tems is introduced; yet neither energy nor temperature is modeled with an
awareness of uncertainty due to process variation. A similar observation can
be made with respect to the work reported in [28] where a reinforcement-
learning algorithm is used in order to improve the lifetime of multiproces-
sor systems. An extensive survey of reliability-aware system-level design tech-
niques given in [26] confirms the trend emphasized above: the widespread
device-level models of failure mechanisms generally ignore the impact of pro-
cess variation on temperature. However, it is unwise to assume that tempera-
ture is deterministic, since it could lead to a substantial yield loss.

An example of a different kind is the work presented in [69]. It introduces
a statistical simulator for reliability analysis under process variation and does
consider temperature as a stochastic parameter. However, as discussed previ-
ously, this study is limited to static steady-state temperatures. Moreover, the
reliability analysis that it presents is an analysis of maximum temperatures
without any direct connection to the common failure mechanisms [37]. The
work in [62] is worthmentioning aswell. Although it is not directly concerned
with reliability analysis, it considers aging variation together with process vari-
ation and presents a framework for timing analysis based on mc sampling.

61

5. Analysis and Design under Process Uncertainty

To summarize, the prior techniques for probabilistic power and tempera-
ture analysis are restricted in use due to one or several of the following traits:
(a) based onmc simulations (potentially slow) [11], (b) limited to power analy-
sis [6, 7, 11, 44, 99, 117], (c) ignoring the power-temperature interplay [6, 7, 44,
51, 99, 117], (d) limited to the static steady-state temperature [51, 58, 59, 69],
(e) exclusive focus on the maximum temperature [59], and (f) a priori chosen
distributions of power and temperature [6, 58, 103]. The designer’s toolbox
does not yet include tools for transient analysis and dynamic steady-state anal-
ysis under process variation, which are of great importance for certain appli-
cations. Furthermore, reliability models lack a flexible approach to taking the
effect of process variation on power and temperature into consideration.

5.5 Proposed Solution

Due to their inherent complexity, uncertainty-quantification problems are of-
ten viewed as approximation problems: one constructs a computationally ef-
ficient surrogate for the system under consideration and then studies this rep-
resentation instead of the original system. In this chapter, we resort to the pc
decomposition, which is thoroughly introduced in Appendix A.7, for the con-
struction of such a lightweight surrogate for the quantity of interest g. The
technique decomposes stochastic quantities into infinite series of mutually
orthogonal polynomials operating on random variables. These series are an
attractive alternative to mc sampling, since they possess much faster conver-
gence properties and provide succinct and intuitive representations of the sys-
tem’s responses to stochastic inputs. Having obtained an adequate polynomial
surrogate for g, we utilize it for calculating the desired statistics about g, such as
its cumulative distribution function (cdf), probability density function (pdf),
probabilistic moments, and probabilities of various events.

The solution is consolidated in a framework for analyzing electronic sys-
tems that are subject to uncertainty due to process variation. The framework
is flexible in the way that it models diverse probability distributions of the un-
certain parameters specified by the designer. Examples of such parameters
include the effective channel length and gate oxide thickness. Moreover, there
are no assumptions regarding the probability distribution of the quantity of in-
terest, as this distribution is unlikely to be known a priori. Examples of such
quantities include power and temperature profiles. The proposed technique is
capable of capturing arbitrary joint effects of the uncertain parameters on the
system, since the impact of these parameters is introduced into the framework
as a “black box,” which is also defined by the designer. In particular, it allows
the power-temperature interplay to be taken into account with no effort.

Leveraging the proposed framework, we extend the deterministic transient
analysis and the deterministic dynamic steady-state analysis presented in Sec-
tion 3.2 and Section 3.4, respectively, by taking account of process variation.

62

5.6. Uncertainty Analysis

Moreover, the framework allows us to enrich the reliability analysis presented
in Section 2.4, which is based on state-of-the-art reliability models, by taking
the effect of process variation on temperature into consideration.

We illustrate the proposed framework by considering two important pro-
cess parameters that are affected by process variation, namely the effective
channel length and gate oxide thickness; note, however, that our approach can
be applied to other parameters as well. Furthermore, we utilize the framework
in order to construct a computationally efficient design-space-exploration pro-
cedure targeted atminimizing energy consumption under a set of probabilistic
constraints on the temperature and lifetime of the system at hand.

In the following sections, we present our general approach to uncertainty
analysis and then specialize it for the aforementioned scenarios.

5.6 Uncertainty Analysis

The key building block of the solutions that we develop in the subsequent sec-
tions is the uncertainty-quantification technique presented in this section. The
task of this technique is to propagate uncertainty through the system, from a
set of inputs to a set of outputs. The inputs are the uncertain parametersu, and
the outputs are the quantities that the designer is interested in studying. The
former could be, for instance, the effective channel length, gate oxide thickness,
and threshold voltage, and the latter could be, for instance, the temperature
profile, energy consumption, and maximum temperature of the system.

The major stages of our general approach are depicted in Figure 5.2. At
Stage 1, the quantity of interest g and the uncertain parametersu are specified.
The quantity is given as a “black-box” function that operates on a particular
outcome of the parameters. In order to evaluate g, the designer is implicitly
required to specify the system model being considered, which also includes a
power model and a temperature model. At Stage 2, the uncertain parameters
u are to be transformed into independent random variables z, since indepen-
dence is a prerequisite of the subsequent calculations. At Stage 3, a surrogate
for g is constructed by means of the pc decomposition. At Stage 4, the com-
puted expansion is processed in order to obtain the desired statistics about g.

5.6.1 Problem Formulation

The problem formulation is problem specific. Thus, in this general section, we
operate on unspecified g and u; more concrete discussions about Stage 1 are
postponed to later sections where we start to apply the proposed methodology
to particular problems. In addition, for convenience, g is assumed to take val-
ues inR here, which is generalized toRn later on. Lastly, there is one recurring
aspect about u that is worth discussing before going any further.

A description of u that is supplied by the designer is an input to our proba-
bilistic analysis. A proper way to describe a set of random variables is to specify

63

5. Analysis and Design under Process Uncertainty

Surrogate construction

Polynomial
basis

Polynomial
coe�cients

Post-processing

Probability
transformation

Independent
variables

Uncertain
parameters

Stage 1

Stage 3

Stage 4

Quantity
of interest

Stage 2

Problem formulation

Statistics about the quantity of interest

Figure 5.2: Overview of the proposed solution for analyzing electronic systems
under process variation

their joint distribution function; see Appendix A.2. In practice, however, such
exhaustive information is often unavailable, which is due mainly to the high
dimensionality and intricate dependencies inherent in real-life problems.

Amore realistic assumption is the knowledge of themarginal distributions
{Fi}nu

i=1 and correlation matrixCorr(u) of u. However, these are not sufficient
to reconstruct the joint distribution of u in general. Nevertheless, it can be ap-
proximatedwell by accompanying the availablemarginals with a carefully con-
structed copula [79], whichmakesu fully specified; see Appendix A.2. Specifi-
cally, one constructs a Gaussian copula based on {Fi}nu

i=1 andCorr(u) as a part
of the Nataf transformation [74], which is introduced in Appendix A.4. This
Gaussian copula is defined in terms of an auxiliary correlation matrix.

Without loss of generality, we target the above practical scenario in our
experiments in this section and thenext one. However, it should be understood
that, even though the marginal distributions and the above copula prescribe a
joint distribution for u, this distribution is an approximation rather than the
true one. If the joint distribution is available, it should be used instead.

64

5.6. Uncertainty Analysis

5.6.2 Probability Transformation

Mutual independence of random variables is required by pc expansions. In
general, however, the individual variables in u : Ω → Rnu are dependent.
Therefore, our foremost task is to transform u into a vector with independent
components in order to fulfill the requirement; see Stage 2 in Figure 5.2. To
this end, an adequate transformation should be performed, depending on the
available information [36]. Denote such a transformation by

u = T (z) (5.1)

where z : Ω→ Rnz is a random vector with nz independent components, and
T : Rnz → Rnu . The quantity of interest g can now be computed as

g(u) = (g ◦ T)(z) = g(T(z)).

Correlated random variables can be transformed into linearly uncorrelated
ones via the kl decomposition described in Appendix A.4 and shown in Equa-
tion A.6. In addition, if the correlated variables form a Gaussian vector, the
uncorrelated variables are mutually independent. In the general case (non-
Gaussian), the most prominent solutions for attaining independence are the
Rosenblatt transformation [95] and the Nataf transformation mentioned ear-
lier. Rosenblatt’s approach is suitablewhen the joint distribution ofu is known.
However, as emphasized in Section 5.6.1, such information is rarely available.
Marginal distributions and a correlation matrix are more likely to be given,
which are sufficient for the Nataf transformation; see Appendix A.4.

Apart from the extraction of the independent variables z, an essential op-
eration at this stage is model order reduction, since the number of stochastic
dimensions—that is, the dimensionality of z—directly impacts the complexity
of the rest of the computations. This operation is frequently treated as a part
of the kl decomposition, and it is also elaborated on in Appendix A.4.

5.6.3 Surrogate Construction

In order to obtain a computationally efficient and convenient characterization
of g, we utilize the pc decomposition with nonintrusive spectral projections
[120]. The corresponding mathematical foundation is given in Appendix A.7.

Assume that g as a function of z belongs to L2(Ω,F ,P); see Appendix A.2.
Then g is expanded into the following series at Stage 3 in Figure 5.2:

g ≈ Cnz

lc
(g) =

∑
i∈Inz

lc

ĝiψi (5.2)

where lc ∈ N0 is the level of the expansion, i = (ik) ∈ Nnz
0 is an index, Inz

lc
is

an index set, and {ψi : i ∈ Inz

lc
} are orthonormal polynomials in nz variables

whose orders are specified by the corresponding elements of i.

65

5. Analysis and Design under Process Uncertainty

It is clear that the first step toward a polynomial expansion is the choice
of a suitable polynomial basis, which is typically made based on the Askey
scheme of orthogonal polynomials [120]. This step is crucial, as the rate of
convergence of pc expansions depends on it. Although there are no rules that
guarantee the optimal choice [65], there are best practices suggesting that one
should be guided by the probability distributions of the random variables that
drive the stochastic system at hand. For instance, when a random variable fol-
lows a beta distribution, it is worth trying the Jacobi basis first; on the other
hand, the Hermite basis is preferable for Gaussian distributions.

As shown in Equation A.25 and Equation A.27, each coefficient ĝi is an
nz-dimensional integral of the product of g and ψi. In general, this integral
should be computed numerically as described in Appendix A.5. Specifically,
an adequate nz-dimensional quadratureQnz

lq
, which is a set of nz-dimensional

points accompanied by a set of scalar weights, is utilized. The result is

ĝi ≈ Qnz

lq
(gψi) =

∑
j∈Jnz

lq

(g ◦ T)(zj)ψi(zj)wj (5.3)

where lq ∈ N0 is the quadrature’s level, and {zj} ⊂ Rnz and {wj} ⊂ R are the
corresponding points and weights, respectively, indexed by J nz

lq
⊂ N0. The op-

erator Qnz

lq
is constructed via the Smolyak algorithm [101] as shown in Equa-

tion A.11. An important aspect to note about this construction is that it is a
combination of a number of cherry-picked operators identified by a certain
index set denoted by Inz

lq
⊂ Nn

0 . Let us discuss the content of I
nz

lc
and Inz

lq
.

The standard choice of Inz

lc
in Equation 5.2 is the isotropic total-order in-

dex set, which can be seen in Equation A.12. Isotropic refers to constraining
all dimensions identically, and total-order to the criterion used for constrain-
ing each dimension. Since ψi is a polynomial of total order at most lc, and g
is approximated by such a polynomial, the integrand in Equation 5.3 can be
assumed to be a polynomial of total order at least 2lc. With this in mind, one
typically constructs such a quadrature that is exact for polynomials of total or-
der up to at least 2lc [36]. More generally, the index set Inz

lc
, which is used in

Equation 5.2, and the index set Inz

lq
, which implicitly determines the content

of the index set J nz

lq
used in Equation 5.3, should be related as Inz

lc
⊆ Inz

lq
.

In the case of Gaussian quadratures, which is a broad and potent class of
quadratures introduced in Appendix A.5, a quadrature of level lq is exact for
polynomials of total order up to 2lq + 1 [47]. Therefore, in this very common
case, an adequate quadrature can be constructed by ensuring that lq ≥ lc.

An important generalization of the isotropic Smolyak algorithm in Equa-
tion A.11 is the anisotropic Smolyak algorithm [82]. The difference between
the isotropic and anisotropic versions lies in the content of Inz

lq
. In particular,

the anisotropic total-order index set is defined as follows:

Inz

lq
=

{
i : i ∈ Nnz

0 , ⟨c, i⟩ ≤ lq
nz

min
i=1

ci

}
(5.4)

66

5.6. Uncertainty Analysis

Algorithm 5.1: Construction of a polynomial chaos expansion

Input: Algorithm G // a subroutine evaluating g ◦ T
Output: ĝ ∈ Rnc

1: for i← 1 to nq do // for each quadrature point zi

2: g(i)← Algorithm G(zi)
3: end for
4: ĝ← Πg
5: return ĝ

where c = (ci) ∈ Rnz with ci ≥ 0 for i = 1, . . . , nz is a vector assigning
importance weights to the dimensions, and ⟨·, ·⟩ is the standard inner product
in Rnz . Equation 5.4 plugged into Equation A.11 results in a sparse grid that
is exact for the polynomial subspace that is obtained using the same index set.

The above approach allows one to exploit anisotropic behaviors that are
present inmany practical problems [82]. It provides fine control over the com-
putational cost associated with the construction of pc expansions: a carefully
chosen importance vector c in Equation 5.4 can significantly reduce the num-
ber of polynomial terms in Equation 5.2 and the number of quadrature points
in Equation 5.3, which are needed for calculating the coefficients of those poly-
nomial terms. The question, then, is in the choice of c. When the kl decom-
position is utilized as a part of T in Equation 5.1, a viable option in this regard
is to rely on the variance contributions of the dimensions given by {λi}nu

i=1 in
Equation A.6. Specifically, we let

ci =

(
λi∑nu

j=1 λj

)γ

(5.5)

for i = 1, . . . , nz where γ ∈ [0, 1] is a tuning parameter. The isotropic scenario
can be recovered by setting γ = 0; other values of γ correspond to various
levels of anisotropy with the maximum attained by setting γ = 1.

Once z has been identified, and lc, lq , and c have been chosen, the corre-
sponding polynomial basis and quadrature stay the same for all quantities that
one might be interested in studying. This observation is very important, as a
lot of preparatory work can and should be done only once and then reused as
needed. In particular, the construction in Equation 5.2 can be reduced to one
matrix multiplication with a precomputed matrix, which we show next.

Letnc = #Inz

lc
be the cardinality of Inz

lc
, which is the number of polynomial

terms and coefficients in Equation 5.2. Let also nq = #J nz

lq
be the cardinality

ofJ nz

lq
, which is the number of quadrature points and weights in Equation 5.3.

Furthermore, assume that the index sets Inz

lc
and J nz

lq
are given certain order-

ings so that one is able to refer to their elements using one-dimensional indices
i = 1, . . . , nc and j = 1, . . . , nq , respectively. Now, let

Π = (ψi(zj)wj)
i=nc,j=nq

i=1,j=1 . (5.6)

67

5. Analysis and Design under Process Uncertainty

The element of Π on row i and column j is polynomial i evaluated at quadra-
ture point j and multiplied by quadrature weight j. The matrix Π is referred
to as the projection matrix. Using Π, the coefficients {ĝi : i ∈ Inz

lc
} in Equa-

tion 5.2 can now be trivially computed as follows:

ĝ = Πg (5.7)

where

ĝ = (ĝi)
nc
i=1 and

g = ((g ◦ T)(zi))
nq

i=1.

It can be seen that this formula is a matrix version of Equation 5.3. Thematrix
Π is the one that should be precomputed and stored for future use.

The pseudocode for a procedure that computes pc expansions by leveraging
the projectionmatrixΠ is given in Algorithm 5.1 where AlgorithmG stands for
a subroutine that calculates g ◦ T for a given z, which is problem specific.

Let us summarize this subsection. In order to give a probabilistic charac-
terization of the quantity of interest g, we construct a polynomial expansion of
this quantity as shown in Equation 5.2. The coefficients of this expansion are
found bymeans of a suitablemultivariate quadrature as shown inEquation 5.3.
The quadrature is constructed via the Smolyak formula given in Equation A.11.
The index set used in both Equation 5.2 and Equation A.11 is the one given in
Equation 5.4 where the anisotropic weights are set according to Equation 5.5.
For computational efficiency, the projection matrix defined in Equation 5.6 is
to be calculated, stored, and used as illustrated in Algorithm 5.1.

5.6.4 Post-Processing

Due to the properties of the pcdecomposition—inparticular, the orthogonality
of the basis discussed in Appendix A.7—the obtained polynomial representa-
tion in Equation 5.2 allows various statistics about g to be estimated with little
effort, which is the subject of Stage 4 in Figure 5.2. The reason that this esti-
mation is straightforward is that the function given in Equation 5.2 is nothing
more than a polynomial; hence, it is easy to interpret and easy to evaluate.

Let us find, for example, the expectation and variance of g. Since the first
polynomial ψ0 in a normalized polynomial basis is unity by definition [120],

Eψ0 = 1.

Hence, using the orthogonality property in Equation A.26, we conclude that

Eψi = 0

68

5.7. Transient Analysis

for i ∈ Inz

lc
\ {0}. Consequently, the expected value and variance of g have the

following straightforward expressions:

Eg = ĝ0 and

Var (g) =
∑

i∈Inz
lc

\{0}

ĝ2i , (5.8)

respectively. It can be seen that the pc decomposition provides analytical for-
mulae, based solely on the coefficients, for these probabilistic moments.

The cdf and pdf of g can be estimated by a sampling method applied to
Equation 5.2, which is typically followed by kernel density estimation [46] or
a similar technique. The sampling in this context can be better understood by
rewriting Equation 5.2, which is given in terms of operators, as follows:

(g ◦ T)(z) ≈ Cnz

lc
(g) (z) =

∑
i∈Inz

lc

ĝiψi(z).

Here the aforementioned operators are applied to an outcome of z drawn from
the corresponding distribution. Consequently, each sample is a trivial evalua-
tion of a polynomial; therefore, sampling methods are computationally cheap
in this case. Furthermore, probabilities of various events can be estimated in
a similar way, and global and local sensitivity analysis of deterministic and
stochastic quantities can be readily conducted on the expansion.

Remark 5.1. The development given in this section remains valid evenwhen g
is a multidimensional quantity from the standpoint of the number of outputs.
In this case, it is convenient to consider g as a row vector with an appropriate
number of elements. All the operations that involve g—such as those given in
Equation 5.2, Equation 5.3, and Equation 5.8—should then be performed ele-
mentwise. In Equation 5.7 and Algorithm 5.1, g and ĝ are treated as matrices
withnc rows, and gi as a rowvector. The output of AlgorithmG inAlgorithm5.1
is assumed to be automatically reshaped into a row vector.

In the following, we apply the uncertainty analysis presented here to a num-
ber of concrete problems, namely transient and dynamic steady-state power
and temperature analysis as well as reliability analysis and optimization.

5.7 Transient Analysis

In this section, we develop a technique for probabilistic transient power and
temperature analysis of electronic systems using the uncertainty-unaware ap-
proach presented in Section 3.2.2 combined with the machinery described in
Section 5.6. Our goal is to obtain a technique that preserves the gradual solu-
tion process that is at the heart of transient analysis; see Section 3.2. In this
way, the designer retains fine control over transient calculations.

69

5. Analysis and Design under Process Uncertainty

5.7.1 Problem Formulation

As stated in Section 5.6, the designer is supposed to decide on the systemmodel
that produces the quantity of interest. Assuming the general system and tem-
perature models given in Section 2.1 and Section 2.3, respectively, the only
component that is left to define is the power model, since it is what introduces
the actual workload into the system. Denote the power model by

p = f(i, q,u) (5.9)

where f : N+ × Rnp × Rnu → Rnp is a function that evaluates the power
consumption p ∈ Rnp of the processing elements at time step i given their heat
dissipation q ∈ Rnp and an assignment of the uncertain parameters u ∈ Rnu .

Remark 5.2. It should be understood that p, q, and u are random vectors in
general, and that f consumes q(ω) and u(ω) and yields p(ω) for some particu-
lar outcome ω ∈ Ω. The function f per se is purely deterministic.

The designer can choose any f . For instance, it can be a closed-form for-
mula or a piece of code. The only assumption we make is that f is smooth
in z and, when viewed as a random variable, belongs to L2(Ω,F ,P) (see Ap-
pendix A.2), which is generally applicable tomost physical systems [120]. The
definition of f is flexible enough to account for such phenomena as the inter-
dependence between power and temperature discussed in Section 2.2.

Our solution to transient analysis under process variation is based on the
one presented in Section 3.2.2. The major difference is that Equation 3.5 im-
plicitly operates on stochastic quantities in the context of this chapter. Conse-
quently, the recurrent solution in Equation 3.6, that is,

si = Esi−1 + Fpi (5.10)

for i = 1, . . . , ns, is stochastic as well. In the deterministic case, it can be
readily employed in order to perform transient power and temperature analy-
sis. In the probabilistic case, however, the situation is substantially different,
since pi and hence si and qi are stochastic quantities. Moreover, at each step,
pi is an arbitrary transformation of the uncertain parameters u and stochastic
temperature qi, which results in a random vector with a generally unknown
probability distribution. Furthermore, pi, qi, si, and u are dependent random
vectors, since the first three are functions of the last one. Therefore, the opera-
tions in Equation 5.10 are to be performed on dependent random vectors with
arbitrary distributions, which, in general, have no closed-form solutions.

Let us now summarize Stage 1 in Figure 5.2. In this section, the quantity of
interest g is the transient power and temperature profiles—denoted by P and
Q, respectively—that correspond to the workload specified by f as shown in
Equation 5.9. Regarding the uncertain parametersu, they are left unspecified,
since the construction below is general with respect to u; however, a concrete

70

5.7. Transient Analysis

scenario will be considered in the next section, Section 5.8. We now proceed
directly to Stage 3, as Stage 2 requires no additional attention in this case.

5.7.2 Surrogate Construction

The goal now is to transform the recurrence in Equation 5.10 in such away that
the distributions of power and temperature can be efficiently estimated. Based
on the methodology presented in Section 5.6, we construct a pc expansion of
f so that it can then be propagated through the recurrence in Equation 5.10 in
order to obtain a pc expansion of power and a pc expansion of temperature.

The expansion of pi, which is required in Equation 5.10 and computed via
f shown in Equation 5.9, is as follows:

Cnz

lc
(pi) =

∑
j∈Inz

lc

p̂ijψj

where {ψj : Rnz → R} are the basis polynomials, {p̂ij} ⊂ Rnp are the corre-
sponding coefficients, and the index set Inz

lc
is the one given in Equation 5.4.

In addition, Remark 5.1 is worth recalling. It can be seen in Equation 5.10
that, due to the linearity of the operations involved in the recurrence, si at-
tains such a pc expansion that has the same structure as the expansion of pi.
The recurrence in Equation 5.10 can then be rewritten as follows:

Cnz

lc
(si) = E Cnz

lc
(si−1) + F Cnz

lc
(pi)

for i = 1, . . . , ns. Consequently, there are two interwoven pc expansions: one
is for power, and the other for temperature. The two expansions have the same
polynomial basis but different coefficients. In order to understand the struc-
ture of the above formula better, let us spell it out as∑

j∈Inz
lc

ŝijψj =
∑

j∈Inz
lc

(
Eŝi−1,j + Fp̂ij

)
ψj .

Making use of the orthogonality property, which can be seen in Equation A.26,
we obtain the following recurrence:

ŝij = Eŝi−1,j + Fp̂ij (5.11)

for i = 1, . . . , ns and j ∈ Inz

lc
. The coefficients {p̂ij} needed in this recurrence

are found using a suitable quadratureQnz

lq
(see Appendix A.5) as follows:

p̂ij = Qnz

lq
(piψj)

for i = 1, . . . , ns and j ∈ Inz

lc
where the operation is elementwise, and it can

be efficiently performed by virtue of the projection matrix in Equation 5.6.
The final step of the construction process is to combine Equation 5.11 with

Equation 3.5b in order to obtain the coefficients of the pc expansion of the

71

5. Analysis and Design under Process Uncertainty

temperature vector qi. Note that, since power depends on temperature, which
is discussed in Section 2.2, at each step of the recurrence in Equation 5.11, the
computation of p̂ij via f should be done with respect to the expansion of qi−1.

The construction process of the stochastic power and temperature profiles
is estimated to have the following time complexity per time step:

O
(
n2nnc + nnnpnqnc + nqf(np)

)
wherenn, np, nc, andnq are the number of thermal nodes, processing elements,
polynomial terms, and quadrature points, respectively; and f(np) denotes the
contribution of the powermodel shown inEquation 5.9. The expression can be
detailed further by expanding nc and nq . Assuming the isotropic total-order
index set in Equation A.12, nc can be calculated as shown in Equation A.13.
This formula behaves as nzlc/lc! in the limit with respect to nz . Regarding
nq , for quadratures based on the full tensor product given in Equation A.9,
log(nq) ∝ nz , which means that the dependency of nq on nz is exponential.

It can be seen that the theory of pc expansions suffers from the curse of di-
mensionality [36, 120]: whennz increases, the number of polynomial terms as
well as the complexity of the corresponding coefficients exhibit growth, which
is exponential without special treatments. The problem does not have a gen-
eral solution and is one of the central topics of many ongoing studies.

We mitigate the curse of dimensionality by (a) keeping the number of
stochastic dimensions low via model order reduction, which is a part of T
shown in Equation 5.1 and is based on the kl decomposition described in Ap-
pendix A.4, and (b) utilizing efficient construction techniques, which is dis-
cussed in Section 5.6.3 and Appendix A.5. For instance, in the case of isotropic
integration grids based on the Smolyak algorithm and Gaussian quadratures,
log(nq) ∝ log(nz), which means that the dependency of nq on nz is only poly-
nomial [47]. Anisotropic constructions allow for further reduction.

Let us summarize Stage 3 in Figure 5.2. Recall the stochastic recurrence in
Equation 5.10where, in the presence of dependencies, an arbitrary function pi

(since it is based on f as shown Equation 5.9) of the stochastic temperature qi

and the uncertain parameters u needs to be evaluated and combined with the
random vector si. This recurrence has been replaced with a purely determinis-
tic one in Equation 5.11. More generally, the whole system, including the tem-
perature model in Equation 2.5, has been substituted with a lightweight surro-
gate defined by a set of polynomials {ψj}, a set of coefficients {p̂ij} for power,
and a set of coefficient {q̂ij} for temperature. These quantities constitute the
desired stochastic power and temperature profiles, and these profiles are ready
to be analyzed at each step of the process as described in Section 5.6.4.

Before we proceed, let us draw attention to the ease and generality of tak-
ing process variation into consideration using the proposed approach. The
description given above is delivered from any explicit formula of any particu-
lar process parameter. In contrast, the solutions from the literature related to

72

5.8. Transient Analysis: Illustrative Application

−4 −2 0 2 4
0.0

0.1

0.2

0.3

0.4
P

ro
ba

bi
lit

y
de

ns
it

y Gaussian(0, 1)
Beta(8, 8, −4, 4)

Uncertain parameter

Figure 5.3: Beta distribution fitted to the standard Gaussian distribution

process variation are typically based on ad hoc expressions and should be indi-
vidually tailored by the designer to each new parameter; see, for instance, [7,
44, 51]. The proposed framework provides great flexibility in this regard.

5.8 Transient Analysis: Illustrative Application

In this section, we consider a particular application of the proposed approach
to probabilistic transient analysis presented in Section 5.7 in order to illustrate
its usage in practice. We begin by describing the scenario being considered.

5.8.1 Problem Formulation

At Stage 1 in Figure 5.2, the quantity of interest g is the transient power and
temperature profiles corresponding to a given workload. Let us now specify
the parameters u that make g uncertain to the designer of the system.

As discussed in Section 2.2, the total dissipation of power is composed of
two major components: dynamic and static. The influence of process varia-
tion on dynamic power is known to be negligibly small [103]; on the other
hand, the variability in static power is substantial, with the subthreshold leak-
age current contributing the most [58, 59]. With this in mind, we focus our
attention on the subthreshold leakage and, more specifically, on the effective
channel length, which is denoted by u, since it has the strongest influence on
this leakage (including its impact on other important parameters such as the
threshold voltage) and is severely deteriorated by process variation [12].

It is well known that the dispersion of the effective channel length around
its nominal value resembles the bell shape of Gaussian distributions. There-
fore, such variations are often conveniently modeled using Gaussian random
variables [6, 11, 44, 51, 58, 59, 69, 99, 103]. Due to the underlying physics and
for demonstration purposes, we take a step further and embed into the model
the fact that the effective channel length—occupying the space between the

73

5. Analysis and Design under Process Uncertainty

drain and source of a transistor—cannot be arbitrarily large or take negative
values, which Gaussian distributions allow it to do. In other words, we require
the model of u to have a bounded support. To this end, we propose to model
the effective channel length and other physically bounded parameters using
the four-parameter family of beta distributions as

u ∼ Beta(a, b, c, d) (5.12)

where a and b are the shape parameters, and c and d are the left and right
bounds of the support, respectively. The parameters a and b can be chosen so
that the frequently observed bell shape is preserved. An illustration is given in
Figure 5.3 where a beta distribution is fitted to the standard Gaussian distribu-
tion; alternatively, one can match probabilistic moments. It can be seen that
the curves are nearly indistinguishable; however, the beta one has a bounded
support [−4, 4], which can potentially lead to more realistic models.

The variability in u is split into global and local parts [11, 58, 99], which
are denoted by uglob and uloc, respectively. The former can be treated as a
composition of inter-lot, inter-wafer, and inter-die variations, and the latter
as a composition of intra-die variations. The variability uglob is assumed to be
shared by all the np processing elements, whereas each processing element is
assumed to have its own local parameter uloc,i. The effective channel length of
processing element i is then modeled using the following formula:

ui = unom + uglob + uloc,i

where unom is the nominal value of the effective channel length. Consequently,
the uncertain parameters of the problem are

u = (uloc,1, . . . , uloc,np
, uglob) : Ω→ Rnp+1.

Global variations are typically assumed to be uncorrelated with respect to
the local ones. The latter, however, are known to have high spatial correlations.
Similarly to the treatment in Chapter 4, we model these correlations using the
composite correlation function given in Equation 4.4, which is inspired by the
variation patterns induced by the fabrication process [12, 15, 41]. Specifically,
the correlation function imposes similarities between those locations on the
die that are close to each other as well as between those locations that are at
the same distance from the center of the die; see also [7, 43, 44, 51, 69].

Although Equation 4.4 captures certain features that are characteristic of
the fabrication process, it is still an idealization. In practice, it can be difficult
to make a justifiable choice and tune such a formula, which is a prerequisite
for techniques based on the continuous kl decomposition, such as those dis-
cussed in Section 5.4. A correlation matrix, on the other hand, can be readily
estimated frommeasurements and thus is amore probable input to probabilis-
tic analysis. Hence, we use Equation 4.4 for the sole purpose of constructing a

74

5.8. Transient Analysis: Illustrative Application

correlationmatrix of {uloc,i}
np

i=1. For convenience, this correlationmatrix is ex-
tended by one dimension in order to accommodate uglob alongwith {uloc,i}

np

i=1.
Thus, the matrix acquires one additional nonzero diagonal element equal to
unity; the resulting matrix is the correlation matrix of u denoted by Corr(u).

Let us now bemore specific about the power model in Equation 5.9. In the
ongoing scenario, f can be rewritten as the following summation:

f(i, q,u) = fdyn(i) + fstat(q,u)

where fdyn : N+ → Rnp and fstat : Rnp × Rnu → Rnp . Without loss of gener-
ality, the dynamic component fdyn is assumed to be given as a dynamic power
profile (recall Equation 2.1) denoted byPdyn. Similarly to Section 4.6, themod-
eling of the static component fstat is based on spice simulations of a reference
electrical circuit composed of bsim4 devices [106] configured according to
the 45-nm ptm hpmodel [108]; specifically, we use a series of cmos invertors.
The simulations are performed with respect to a sufficiently wide fine-grained
two-dimensional grid—the effective channel length against temperature—and
the results are tabulated. An interpolation technique is then utilized whenever
it is necessary to calculate fstat at a point within the range of the grid.

Lastly, in order to be able to perform temperature calculations, an adequate
thermal rc circuit should be constructed. Given the specification of the plat-
form under consideration—including the floorplan of the die and the config-
uration of the thermal package—this circuit is obtained by means of HotSpot
[100]. The structure of the circuit is the one described in Section 2.3.

To conclude, in this section, we address the variability in the effective chan-
nel length. The input to our analysis is composed of themarginal distributions
of the uncertain parameters u, which are beta distributions, and the corre-
sponding correlation matrix Corr(u). Let us now go over the other stages of
our methodology presented in Section 5.6 and depicted in Figure 5.2.

5.8.2 Probability Transformation

At Stage 2 in Figure 5.2, u should be processed in order to extract a vector of
mutually independent random variables z via a suitable transformation T; see
Equation 5.1. Following the guidance given in Section 5.6.2, themost apposite
T in the ongoing scenario is the Nataf transformation. The whole procedure
is described in detail in Appendix A.4 and can be seen in Equation A.8.

Using this specific T, arbitrary marginal distributions can be prescribed
for z. There are no restrictions in this regard as long as a suitable polynomial
basis can be constructed, which is discussed in Section 5.6.3. We let z have
beta distributions, keeping u and z in the same family of distributions.

Since the number of stochastic dimensions, which is nu = np+1 in the case
of u, directly impacts the computational cost of pc expansions, which is noted
in Section 5.6.3, one should consider the possibility of model order reduction

75

5. Analysis and Design under Process Uncertainty

before constructing these expansions. Therefore, the reduction procedure de-
scribed in Appendix A.4 in connection with T is assumed to be engaged in this
transformation. The reduced dimensionality is denoted by nz .

5.8.3 Surrogate Construction

At Stage 3 in Figure 5.2, the uncertain parameters, power model, and temper-
ature model developed in the previous subsections are to be fused together un-
der the desired workloadPdyn in order to produce the corresponding stochas-
tic power and temperature profiles denoted by P andQ, respectively.

In the current scenario, the construction of pc expansions is based on
the Jacobi polynomial basis, since it is preferable in situations involving beta-
distributed parameters [120]. To give a concrete example, for a dual-core plat-
form (np = 2) with two stochastic dimensions (nz = 2), the second-level pc
expansion (lc = 2) of temperature at time step i is as follows:

C22 (qi) = q̂i,(0,0)ψ(0,0) + q̂i,(1,0)ψ(1,0) + q̂i,(0,1)ψ(0,1)

+ q̂i,(1,1)ψ(1,1) + q̂i,(2,0)ψ(2,0) + q̂i,(0,2)ψ(0,2)

(5.13)

where the coefficients {q̂ij} are vectors with two elements corresponding to
the two processing elements. Regarding the basis,

ψ(0,0)(z) = 1,

ψ(1,0)(z) = 2z1,

ψ(0,1)(z) = 2z2,

ψ(1,1)(z) = 4z1z2

ψ(2,0)(z) =
15

4
z21 −

3

4
, and

ψ(0,2)(z) =
15

4
z22 −

3

4
.

The Jacobi polynomials have two parameters [120], and the ones shown above
correspond to the case where both parameters are equal to two. Such a series
can be shorter or longer, depending on the accuracy requirements given by lc.
The expansion of power has the same structure but different coefficients.

The next step is to compute the coefficients of power {p̂ij} in Equation 5.11,
which subsequently yield the coefficients of temperature {q̂ij}. As discussed in
Section 5.6.3, these computations involve multidimensional integration with
respect to the distribution of z, and they should be performed numerically us-
ing an adequate quadrature Qnz

lq
. When beta distributions are involved, the

natural choice is Gauss–Jacobi quadratures, which belong to the class of Gaus-
sian quadratures introduced in Appendix A.5. Given Qnz

lq
, the coefficients are

computed as shown in Equation 5.3. It is important to note that lq should be
chosen in such a way that the quadrature is exact for polynomials of total order

76

5.8. Transient Analysis: Illustrative Application

Time (ms)

P
ow

er
 (

W
)

0

5

10

15

20

100 200 300 400 5000

Processor 1
Processor 2

Figure 5.4: Example of a dynamic power profile of a dual-core platform

up to at least 2lc, that is, twice the level of pc expansions, which is discussed
in Section 5.6.3. Consequently, lq ≥ lc, since the quadrature is Gaussian.

To summarize, we have completed four out of five stages of the proposed
framework depicted in Figure 5.2. The result is a lightweight surrogate for the
entire system. At each time step, the surrogate is composed of two np-valued
polynomials—one is for power, and the other one for temperature—which are
defined in terms of nz mutually independent random variables.

5.8.4 Post-Processing

At Stage 4 in Figure 5.2, the constructed expansions are utilized in order to
assist the designer in analyzing the impact of process variation on power- and
temperature-related characteristics of the system that is being developed. Con-
sider, for example, Equation 5.13. It can be seen that the surrogate model has
a negligibly small computational cost: for any outcome of z, one can readily
calculate the corresponding temperature by plugging this outcome into Equa-
tion 5.13; the same applies to power. Therefore, the representation can be
trivially analyzed in order to retrieve various statistics about the system. Let
us illustrate a few of them using the expansion given in Equation 5.13.

Assume that the dynamic power profilePdyn is the one shown in Figure 5.4.
Having constructed a surrogate with respect to this profile, we can calculate,
for instance, the expectation and variance of the temperature that the system
has at a certain moment in time, which is a trivial operation given the formu-
lae in Equation 5.8. For the whole time span of Pdyn, these quantities are
plotted in Figure 5.5 where the dashed lines correspond to one standard de-
viation above the corresponding expectations. The displayed curves closely
match those obtained via mc sampling with nω = 104 samples; however, our
method takes less than a second, whereasmc sampling takes more than a day,
which will be discussed further in Section 5.9. In addition, the pdf of the tem-
perature at that moment can be estimated. This operation is performed by

77

5. Analysis and Design under Process Uncertainty

Time (ms)

T
em

pe
ra

tu
re

 (
°C

)

50

60

70

80

90

100
Processor 1
Processor 2

100 200 300 400 5000

Figure 5.5: Expectation (solid) and one standard deviation above it (dashed)
of a stochastic temperature profile of a dual-core platform

sampling the surrogate, in which case we might obtain curves similar to those
shown in Figure 5.6, which is a part of a different example given in Section 5.9.

5.9 Transient Analysis: Experimental Results

In this section, we evaluate our framework using different configurations of the
illustrative application. All the experiments are conducted on a gnu/Linux
machine equipped with an Intel Core i7 2.66 ghz and 8 gb of ram. All the
configuration files used in the experiments are available online at [18].

Let us first elaborate on the default configuration of our setup, which is
subsequently adjusted according to the purpose of each particular experiment.
We consider a 45-nm technological process. The effective channel length is
assumed to have a nominal value of 17.5 nm [108] and a standard deviation
of 2.25 nm where the global and local variations are equally weighted. The
correlation matrix of the uncertain parameters is computed based on Equa-
tion 4.4 where the length-scale parameters ℓSE and ℓOU are set to half the size
of the square die. In themodel order reduction described in Appendix A.4, the
threshold parameter η is set to 0.99, which preserves 99% of the variance of
the data. The floorplan of the platform is constructed in such a way that the
processing elements form a regular grid. The dynamic power profiles involved
in the experiments are based on simulations of applications that are randomly
generated via tgff [34]. The time step∆t of power and temperature profiles
is set to 1 ms, which is also the time step of the recurrence in Equation 5.11.

The construction of pc expansions and integration grids follows the expo-
sition given in Section 5.6.3. The tuning parameter γ in Equation 5.5 is set to
zero, which turns the anisotropic index set in Equation 5.4 into the isotropic
one in Equation A.12. Anisotropy will be exploited in a later section.

In the following, we focus on the assessment of temperature profiles. Note,
however, that the results for temperature allow one to draw reasonable con-

78

5.9. Transient Analysis: Experimental Results

clusions about the performance of the proposed framework with respect to
power, since power is an intermediate step toward temperature, and any accu-
racy problems with respect to power are expected to propagate to temperature.

Additionally, it is worth noting that, since the temperature-driven studies
discussed in Section 5.4, namely [51, 58, 59, 69], work under the static steady-
state assumption (the work in [59] is also limited to the maximum tempera-
ture, and the one in [51] does not model the power-temperature interplay), a
one-to-one comparison with the proposed technique is not possible.

For purposes of comparison, we employ mc sampling, which is introduced
in Section 1.5. This approach samples the quantity of interest directly, mean-
ing that there is no intermediate representation involved in these calculations.
There is nomodel order reduction applied prior to direct sampling, which pre-
serves the whole variance of the problem at hand, and the system in Equa-
tion 2.5 is solved using traditional techniques, namely the fourth- and fifth-
order Runge–Kutta formulae (the Dormand–Prince method) [87].

5.9.1 Approximation Accuracy

The first set of experiments aims to investigate the accuracy of our framework
with respect to direct sampling. At this point, it is important to realize that
the true distributions of temperature are unknown, and both the pc and mc
approaches introduce errors. These errors decrease as the level lc of pc expan-
sions and the number of samples nω of mc sampling increase. Hence, instead
of postulating that the mc technique with a certain number of samples is the
solution that we should achieve, we vary both lc and nω and monitor the cor-
responding difference between the results produced by the two alternatives.

We also study the impact of the correlation structure between the local ran-
dom variables {uloc,i}

np

i=1; recall Section 5.8. More specifically, apart from lc
and nω , we change the balance between the two correlation functions shown
in Equation 4.4, that is, the squared-exponential kernel kSE and the Ornstein–
Uhlenbeck kernel kOU, which is controlled by the weight coefficient w ∈ [0, 1].

The pc and mcmethods are compared using three error metrics. The first
two are the normalized root-mean-square errors (nrmses) of the expectation
and variance of temperature profiles. The third metric is the mean of the
nrmses of the empirical pdfs of temperature constructed for all processing
elements at all time steps. The metrics are denoted by ϵE, ϵVar, and ϵf , respec-
tively. The first two are straightforward to interpret, and they are calculated
using the analytical expressions in Equation 5.8. The third one is a strong in-
dicator of the quality of the distributions estimated by our framework, and it
is computed by sampling the constructed pc expansions. In contrast to direct
sampling, this sampling incurs negligible overhead, as noted in Section 5.6.4.

The studied values for lc, nω , and w are the sets {i}7i=1, {10i}5i=2, and
{0, 0.5, 1}, respectively. The three variants of w correspond to the total dom-
inance of kOU (w = 0), perfect balance between kSE and kOU (w = 0.5), and

79

5. Analysis and Design under Process Uncertainty
Table

5.1:
A
ccuracy

ofthe
proposed

solution
an

d
M
on

te
C
arlo

sam
plin

g
w
hen

the
O
rn
stein

–U
hlen

beck
kern

eldom
in
ates

ϵE
(%

)
ϵE

(%
)

ϵE
(%

)
ϵE

(%
)

ϵV
a
r
(%

)
ϵV

a
r
(%

)
ϵV

a
r
(%

)
ϵV

a
r
(%

)
ϵ
f
(%

)
ϵ
f
(%

)
ϵ
f
(%

)
ϵ
f
(%

)
lc /n

ω
10

2
10

3
1
0
4

1
0
5

10
2

1
0
3

1
0
4

1
0
5

10
2

10
3

10
4

10
5

1
1.70

0.92
0.51

0.48
88.19

55.73
55.57

53.08
10.88

11.48
8.85

8.83
2

1.36
0.58

0.20
0.18

67.66
23.30

23.05
19.64

10.15
10.11

6.26
6.04

3
1.26

0.49
0.15

0.14
61.16

13.06
12.78

9.08
5.49

5.04
2.95

2.73
4

1.23
0.45

0.14
0.14

58.49
8.85

8.57
4.78

3.84
2.02

1.50
1.51

5
1.21

0.44
0.14

0.14
57.31

7.00
6.71

2.92
3.83

2.27
1.03

0.84
6

1.21
0.44

0.14
0.14

56.75
6.12

5.83
2.08

3.08
1.94

0.93
0.66

7
1.20

0.43
0.14

0.14
56.41

5.60
5.31

1.62
2.78

1.39
0.72

0.62

Table
5.2:

A
ccuracy

ofthe
proposed

solution
an

d
M
on

te
C
arlo

sam
plin

g
w
hen

the
correlation

kern
els

are
balan

ced

ϵE
(%

)
ϵE

(%
)

ϵE
(%

)
ϵE

(%
)

ϵV
a
r
(%

)
ϵV

a
r
(%

)
ϵV

a
r
(%

)
ϵV

a
r
(%

)
ϵ
f
(%

)
ϵ
f
(%

)
ϵ
f
(%

)
ϵ
f
(%

)
lc /n

ω
10

2
10

3
1
0
4

1
0
5

10
2

1
0
3

1
0
4

1
0
5

10
2

10
3

10
4

10
5

1
1.66

0.98
0.60

0.57
65.82

64.11
66.13

66.70
10.97

10.69
9.27

8.77
2

1.31
0.63

0.27
0.23

49.55
29.21

30.49
28.24

6.43
5.42

3.87
3.59

3
1.13

0.44
0.16

0.14
43.44

15.94
16.88

13.48
5.60

3.80
1.83

1.53
4

1.17
0.48

0.17
0.14

40.24
9.11

9.80
5.71

5.48
3.80

1.77
1.47

5
1.07

0.38
0.16

0.16
39.68

7.96
8.56

4.35
3.80

1.72
1.59

1.62
6

1.19
0.49

0.18
0.15

38.23
5.19

5.51
1.24

4.62
2.86

1.16
0.86

7
0.99

0.30
0.21

0.21
38.27

5.27
5.59

1.29
3.45

2.01
1.82

1.68

Table
5.3:

A
ccuracy

ofthe
proposed

solution
an

d
M
on

te
C
arlo

sam
plin

g
w
hen

the
squared-expon

en
tialkern

eldom
in
ates

ϵE
(%

)
ϵE

(%
)

ϵE
(%

)
ϵE

(%
)

ϵV
a
r
(%

)
ϵV

a
r
(%

)
ϵV

a
r
(%

)
ϵV

a
r
(%

)
ϵ
f
(%

)
ϵ
f
(%

)
ϵ
f
(%

)
ϵ
f
(%

)
lc /n

ω
1
0
2

1
0
3

10
4

10
5

10
2

1
0
3

1
0
4

1
0
5

10
2

10
3

10
4

10
5

1
1.49

0.27
0.15

0.15
44.86

42.41
43.10

46.51
12.45

11.19
9.57

9.21
2

1.42
0.22

0.17
0.14

26.47
8.89

1.56
5.03

11.84
6.22

5.52
4.79

3
1.40

0.21
0.19

0.15
24.90

7.54
4.08

1.39
10.62

2.93
1.66

1.42
4

1.45
0.24

0.16
0.14

24.78
7.57

4.50
1.27

9.92
1.98

0.72
0.40

5
1.38

0.20
0.20

0.16
25.14

7.63
3.41

1.77
10.19

1.90
0.78

0.70
6

1.48
0.25

0.15
0.14

24.64
7.58

4.93
1.34

9.90
2.27

1.14
0.74

7
1.34

0.19
0.23

0.19
24.86

7.48
4.13

1.40
8.47

1.57
1.13

1.24

80

5.9. Transient Analysis: Experimental Results

Temperature (°C)

P
ro

ba
bi

lit
y

de
ns

it
y

0.00

0.04

0.08

0.12

0.16
Processor 1
Processor 2
Processor 3
Processor 4

60 70 90 11080 100 120

Figure 5.6: Example of probability density functions computed using the pro-
posed solution (solid) and Monte Carlo sampling (dashed)

total dominance of kSE (w = 1). A comparison for a quad-core architecture
with a dynamic power profile of ns = 102 steps is given in Table 5.1, Table 5.2,
and Table 5.3, which correspond to w = 0, w = 0.5, and w = 1, respectively.
Each table contains three subtables: the left one is for ϵE, the middle one for
ϵVar, and the right one for ϵf , which results in nine subtables in total.

The columns of the tables that correspond to high values of nω can be used
to assess the accuracy of the constructed pc expansions; likewise, the rows that
correspond to high values of lc can be used to gauge the sufficiency of the num-
ber of mc samples. One can immediately note that, in all the subtables, all
the error metrics tend to decrease from the top-left corners (low values of lc
and nω) to the bottom-right corners (high values of lc and nω), which suggests
that the pc andmcmethods converge. There are a few outliers associated with
low expansion levels and the random nature of sampling. For instance, ϵVar in-
creases from 66.13 to 66.7 and ϵf from 1.59 to 1.62 when nω makes a transition
from 104 to 105 in Table 5.2. However, the main trend is still clear.

For clarity of the discussions below, we focus primarily on one of the three
tables, namely Table 5.2. The conclusions drawn with respect to Table 5.2 will
be generalized to the other two tables at the end of this subsection.

First, we assess the accuracy of our technique and thus pay particular at-
tention to the columns of Table 5.2 corresponding to high values of nω . It can
be seen that the error of the expectation is small even when lc = 1. Concretely,
it is bounded by 0.6%; see ϵE for lc ≥ 1 and nω ≥ 104. The error of the vari-
ance starts at 66.7% for the first-level pc expansions and drops significantly
to 5.71% and below for the fourth level and higher; see ϵVar for lc ≥ 4 and
nω = 105. The error of the pdf allows us to conclude that the pdfs computed
by means of pc expansions starting from the third level closely follow those
estimated by the mc technique with a large number of samples. The observed
difference in Table 5.2 is bounded by 1.83%; see ϵf for lc ≥ 3 and nω ≥ 104.

81

5. Analysis and Design under Process Uncertainty

In order to give a better sense of the proximity of the two methods, Fig-
ure 5.6 shows the pdfs computed using our framework with lc = 4 (the solid
lines) along with those calculated by the mc approach with nω = 104 (the
dashed lines) at time 50 ms. It can be seen that the pdfs closely match each
other. Note that this example concerns one particular time step. Such curves
are readily available for the other steps of the analyzed time span as well.

Next, we investigate the convergence of themc technique and consequently
watch the rows of Table 5.2 that correspond to pc expansions of high levels.
Similarly to the previous observations, even for low values of nω , the error of
the expectation estimated by direct sampling is relatively small. Specifically,
this error is bounded by 1.19%; see ϵE for lc ≥ 4 and nω = 102. At the same
time, the case with nω = 102 has high error rates in terms of the variance
and pdf: they are above 38% and around 4%, respectively; see ϵVar and ϵf for
lc ≥ 4 and nω = 102. The results in the cases with nω ≥ 103 are reasonably
more accurate, and the one with nω = 104 appears to be sufficiently adequate.

The above conclusions drawn with respect to the results reported in Ta-
ble 5.2 (w = 0.5) are directly applicable to those reported in Table 5.1 (w = 0)
and Table 5.3 (w = 1). The only difference is that the average error rates are
lower when either of the two correlation kernels shown in Equation 4.4 domi-
nates. In particular, according to ϵVar, the case withw = 1, which corresponds
to kSE and is reported in Table 5.3, stands out as the least challenging.

Guided by the above observations, we conclude that our framework deliv-
ers sufficiently accurate results starting from lc = 4, and that themc estimates
can be considered to be sufficiently reliable starting from nω = 104.

5.9.2 Computational Speed

The second set of experiments is to measure the speed of our framework with
respect to direct sampling. To this end, we keep lc and nω fixed and equal to
4 and 104, respectively. The latter value is also similar to those used in the
literature [7, 44, 51, 58, 69, 99, 118] and consistent with the theoretical results
on the accuracy of mc sampling presented in [33]. Analogously to the previous
subsection, we report the results obtained for different values of the weight
coefficientw, which impacts the number of the independent variables z : Ω→
Rnz preserved after the model order reduction described in Appendix A.4.

First, we vary the number of processing elements np, which directly af-
fects the dimensionality of the uncertain parameters u : Ω → Rnu ; recall
Section 5.8. The results, including the dimensionality nz of z, are given in Ta-
ble 5.4 where np ∈ {2i}5i=1 and ns = 103. It can be seen that the variation
patterns inherent in the fabrication process [15] offer significant potential for
model order reduction: nz is observed to be at most 12, whereas the maxi-
mum number without reduction is 33 (1 global variable and 32 local ones cor-
responding to the case with np = 32). The amount of reduction also depends
on the floorplan, which is illustrated by the decrease in nz when np increases

82

5.9. Transient Analysis: Experimental Results

Table 5.4: Computational speed of the proposed solution and Monte Carlo
sampling with respect to the number of processing elements

np nz pc expansion (s) mc sampling (h) Speedup (×)

w = 0

2 2 0.16 38.77 8.76 × 105
4 2 0.16 39.03 8.70 × 105
8 3 0.27 39.22 5.29 × 105
16 4 0.83 40.79 1.77 × 105
32 7 11.02 43.25 1.41 × 104

w = 0.5

2 3 0.21 38.72 6.54 × 105
4 5 0.62 38.92 2.28 × 105
8 6 1.46 40.20 9.94 × 104
16 10 23.53 41.43 6.34 × 103
32 12 100.10 43.05 1.55 × 103

w = 1

2 3 0.20 38.23 6.88 × 105
4 5 0.56 38.48 2.49 × 105
8 7 2.47 39.12 5.71 × 104
16 11 40.55 41.02 3.64 × 103
32 8 21.41 43.82 7.37 × 103

Table 5.5: Computational speed of the proposed solution and Monte Carlo
sampling with respect to the number of time steps

ns pc expansion (s) mc sampling (h) Speedup (×)

w = 0

10 0.01 0.51 1.77 × 105
102 0.02 3.87 7.64 × 105
103 0.16 38.81 8.72 × 105
104 1.58 387.90 8.84 × 105
105 15.85 3877.27 8.81 × 105

w = 0.5

10 0.02 0.39 6.10 × 104
102 0.07 3.84 2.08 × 105
103 0.52 38.41 2.66 × 105
104 5.31 383.75 2.60 × 105
105 54.27 3903.28 2.59 × 105

w = 1

10 0.02 0.39 6.15 × 104
102 0.07 3.88 2.05 × 105
103 0.54 38.86 2.60 × 105
104 5.31 390.95 2.65 × 105
105 53.19 3907.48 2.64 × 105

83

5. Analysis and Design under Process Uncertainty

from 16 to 32 for w = 1. To elaborate, one floorplan is a four-by-four grid, a
square, while the other an eight-by-four grid, a rectangle. Since both are fitted
into square dies, the former is spread across the whole area, whereas the latter
is concentrated along themiddle line; the rest is due to the peculiarities of kSE.

On average, the kOU kernel (w = 0) requires the smallest number of vari-
ables, while the combination of the kSE and kOU kernels (w = 0.5) requires the
largest. This means that, in the latter case, more variables should be preserved
in order to retain 99% of the variance. Consequently, the case with w = 0.5 is
themost demanding in terms of computation time. Note that, since the results
reported in the previous subsection correspond to the case with np = 4, nz is
two, five, and five in Table 5.1, Table 5.2, and Table 5.3, respectively.

At this point, it is important to realize the following. First, since the curse
of dimensionality arguably constitutes themajor concern of pc expansions, the
applicability of our framework depends primarily on how this curse manifests
itself with regard to the problem at hand, that is, on the dimensionality nz of
z. Second, since z is a result of a procedure that depends on many factors, the
relationship between u and z is not straightforward, which is also illustrated
in the previous paragraphs. Thus, nu can bemisleading when reasoning about
the applicability of our technique; nz is well suited for this purpose.

Another observationwith respect to Table 5.4 is the shallow slope of the exe-
cution time of themc technique, which illustrates the well-known fact that the
workload per sample is independent of the number of stochastic dimensions.
On the other hand, the rows with nz ≥ 10 hint at the curse of dimensionality,
which pc expansions suffer from. However, even in high dimensions, the pro-
posed framework significantly outperforms direct sampling. For instance, in
order to analyze a dynamic power profile with 103 steps of a platform with 32
processing elements, the mc approach requires more than 40 hours, whereas
our framework takes less than two minutes; see the case with w = 0.5.

Next, we investigate the scaling properties of the proposed framework with
respect to the duration of the analyzed time span, which is directly propor-
tional to the number of time steps ns covered by power and temperature pro-
files. The results for a quad-core platform are given in Table 5.5. Due to the
long execution times demonstrated by the mc approach, its statistics for high
values of ns are extrapolated based on a smaller number of samples nω < 104.
Similarly to Table 5.4, we observe a certain dependency of the constructed ex-
pansions on the dimensionality nz , which is two for w = 0 and five for w = 0.5

and w = 1; see Table 5.4 for np = 4. It can be seen in Table 5.5 that the com-
putation times of both techniques grow linearly with respect to ns, which is
expected. However, our framework displays a superior performance, being up
to five orders of magnitude faster than the mc alternative.

It is worth noting that the observed speedups are due to two major factors.
First, pc expansions are generally superior to mc sampling when the curse of
dimensionality is suppressed [36, 120], which we accomplish by model order
reduction and efficient integration schemes. The second reason is the partic-

84

5.10. Dynamic Steady-State Analysis

Algorithm 5.2: Calculation of dynamic steady-state power and temperature
profiles given an outcome of the uncertain parameters

Input: u ∈ Rnu

Output: P ∈ Rnp×ns ,Q ∈ Rnp×ns

1: Q←Qamb // a matrix version of qamb

2: repeat
3: P← f(u,Q) // for all time steps at once
4: Q← Algorithm 3.1(P)
5: until a stopping condition is satisfied
6: return P,Q

ular technique used in the framework for solving the temperature model and
constructing pc expansions in a stepwise manner shown in Equation 5.11.

5.10 Dynamic Steady-State Analysis

In this section, we discuss dynamic steady-state power and temperature anal-
ysis under process variation. Unlike transient analysis, this analysis cannot be
done one time step at a time, since the repetitive workload needs to be taken
into account at once in order to calculate the corresponding dynamic steady
state. Thus, similarly to the contrast between Section 3.2 and Section 3.4, the
solutions in Section 5.7 and this section differ. However, they still rely on the
same methodology outlined in Section 5.6 and shown in Figure 5.2.

5.10.1 Problem Formulation

The system model is the same as the one in Section 5.7. The only difference is
that it is more convenient to define the power model as follows:

P = f(u,Q). (5.14)

The function f : Rnu × Rnp×ns → Rnp×ns is supposed to return the periodic
power profile that corresponds to the periodic workload being analyzed.

The solution to probabilistic dynamic steady-state analysis is based on the
deterministic one presented in Section 3.4.2. The power, temperature, and
other vectors that appear in Section 3.4.2 become stochastic in the present
context, which also concerns the boundary condition given in Equation 3.7.
The pseudocode for a procedure that delivers Q for a fixed u is listed in Al-
gorithm 3.1. The algorithm does not take account of the interdependence
between power and temperature; however, this interdependence can be ad-
dressed via one of the techniques presented in Section 3.5. In this section, we
use the iterative approach illustrated in Algorithm 3.2. For clarity, this algo-
rithm is rewritten here as shown in Algorithm 5.2; the main difference is that
the calculation of power on line 3 is now based on Equation 5.14.

85

5. Analysis and Design under Process Uncertainty

Remark 5.3. The application of the linear approximation described in Sec-
tion 3.5 is problematic in this case. This technique is suitable when the only
varying parameter is temperature, and all other parameters have nominal val-
ues. In that case, it is relatively easy to decide on a representative temperature
range and apply a curve-fitting procedure. In this case, however, the power
model has multiple parameters that range far from their nominal values.

To recapitulate, the quantity of interest g in Figure 5.2 is the dynamic
steady-state power and temperature profiles, which are denoted by P and Q,
respectively. The calculation of this quantity is shown in Algorithm 5.2.

5.10.2 Surrogate Construction

At Stage 3 in Figure 5.2, the procedure delineated in Section 5.6.3 is applied to
Algorithm 5.2 from Stage 1 with respect to the output of Stage 2. Concretely,
Algorithm 5.2 is utilized inside Algorithm 5.1 via Algorithm G. In this case,
Algorithm G calls Algorithm 5.2 and returns P or Q or both, depending on
what is actually needed for the subsequent calculations, in a suitable format.

Suppose, for instance, that the designer is interested in analyzing solely the
dynamic steady-state temperature profile Q. Following Remark 5.1 concern-
ing vector-valued quantities, g is treated as an npns-element row vector, in
which case each coefficient ĝi in Equation 5.2 is also such a vector. The pro-
jection matrix, which is defined in Equation 5.6, and Algorithm 5.1 should be
reinterpreted accordingly: g is an nq × npns matrix whose row j is Q com-
puted at point j of the quadrature in Equation 5.3 and reshaped into a row
vector. Similarly, ĝ should be understood as an nc × npns matrix whose row i

is coefficient i of the expansion in Equation 5.2. Recall that a certain ordering
is assumed to be imposed on quadrature points and polynomial terms.

The constructed pc expansion can now be post-processed as required,
which is already the topic of Stage 4 in Figure 5.2; see Section 5.6.4.

5.11 Reliability Analysis

Our goal in this section is to build a flexible and computationally efficient tech-
nique for reliability analysis of electronic systems that are affected by process
variation. The development is based on the general reliability modelR(·|g) de-
scribed in Section 2.4, which is not aware of process variation yet. Note also
that, in this section, we address not only process uncertainty but also aging
uncertainty, which is introduced in Section 1.1.3, since the latter can be more
adequately mitigated when the former is accounted for in reliability analysis.

5.11.1 Problem Formulation

Our work in this context is motivated by the following two observations.

86

5.11. Reliability Analysis

First, as underscored throughout the thesis, temperature is the driving
force of many failure mechanisms. The most prominent examples include
electromigration, time-dependent dielectric breakdown, stressmigration, and
thermal cycling; the interested reader is referred to [37] for an overview. All
of these mechanisms have strong dependencies on temperature. At the same
time, temperature is closely related to process parameters—such as the effec-
tive channel length and gate oxide thickness—and can vary dramatically when
these parameters deviate from their nominal values. Despite these concerns,
the current state-of-the-art techniques for reliability analysis of electronic sys-
tems lack a systematic treatment of process variation and, in particular, the
effect of this variation on temperature, which is also the case in Section 2.4.

Second, having established a reliability model R(·|g) of the system under
consideration, the major portion of the associated computation time is as-
cribed to the evaluation of the parameterization g rather than to the model
per se, that is, for a given g. For instance, g often contains estimates of the
mean time to failure (mttf) of each processing element for a range of stress
levels. Thus, g typically involves computationally intensive simulations, in-
cluding power analysis paired with temperature analysis; see Section 2.4.

Guided by the aforementioned observations, we employ the pc decomposi-
tion in order to construct a lightweight surrogate for g. It is worth emphasizing
that R(·|g) stays intact, which means that our approach does not impose any
restrictions on R(·|g). Hence, the designer can take advantage of an arbitrary
reliability model in a straightforwardmanner. Naturally, this also implies that
modeling errors associated with the chosenR(·|g) can affect the quality of the
results produced by our technique. Therefore, choosing an adequate reliability
model for the problem at hand is the designer’s responsibility.

Remark 5.4. It is important to realize that there are two levels of probabilis-
tic modeling here. First, R(·|g) per se is a probabilistic model describing the
lifetime L of the system. Second, the parameterization g is another probabilis-
tic model characterizing the impact of uncertainty due to process variation on
the reliability model. Therefore, the overall model can be thought of as a prob-
ability distribution over probability distributions. Given an outcome of the
fabrication process and thus g, the system’s lifetime remains random.

To conclude, the quantity of interest g, which is an output of Stage 1 in
Figure 5.2, is the parameters g of the reliability model under consideration.

5.11.2 Surrogate Construction

Similarly to Section 5.10, Stage 3 and Stage 4 of the framework require no
particular attention in this section except for noting that Remark 5.1 should
be taken into consideration if the parameterization g has multiple entries.

87

5. Analysis and Design under Process Uncertainty

In conclusion, the proposed approach to reliability analysis is founded on
the basis of state-of-the-art reliability models, and it enriches their modeling
capabilities by seamlessly incorporating the deleterious impact of process vari-
ation. In particular, the technique allows for a straightforward propagation of
uncertainty from process parameters through temperature to the lifetime of
the system, which is an important application, since temperature is the driv-
ing force of many failure mechanisms. In contrast to the straightforward use
of mc sampling, the lightweight surrogates that we construct make the subse-
quent analysis highly efficient from a computational perspective.

5.12 Energy Optimization

The framework proposed in this chapter is illustrated in the context of design-
space exploration, which is analogous to the optimization in Section 3.6. Con-
cretely, we pursue energy minimization in the presence of process variation.

5.12.1 Problem Formulation

The general setup is the same as the one described in Section 3.6.2. We con-
tinue working with thermal-cycling fatigue [37], which is discussed in Sec-
tion 2.4.2 and Section 3.6. Recall that the system is exposed to a periodic
or approximately periodic workload, and that the corresponding temperature
profile is a dynamic steady-state temperature profile. In the deterministic case,
this temperature profile can be computed as described in Section 3.4.2.

The goal of the optimization in this section is to find a schedule that min-
imizes the system’s energy consumption while satisfying certain constraints.
Specifically, our objective is as follows:

min
S

E(E(S)) (5.15)

such that

τ(S) ≤ τmax,

P (Q(S) ≥ qmax) ≤ ρburn, and
P (E (L(S)) ≤ Lmin) ≤ ρwear

(5.16)

where

E(S) = ∆t ∥P(S)∥1 and

Q(S) = ∥Q(S)∥∞ .

To begin with, S denotes a schedule (recall that a schedule includes not only
the starting times of the tasks but also their mapping onto the processing ele-
ments); P andQ are the corresponding dynamic steady-state power and tem-
perature profiles, respectively; ∆t is their sampling interval; and ∥ · ∥1 and

88

5.12. Energy Optimization

∥ · ∥∞ are the Manhattan and uniform norms, respectively. The objective in
Equation 5.15 is to minimize the expectation of the total energy consumption
E : Ω → R, which is a random variable, since energy depends on power,
and power depends on the uncertain parameters u. The constraints in Equa-
tion 5.16 concern time, temperature, and reliability. The first one constrains
the end-to-end delay τ of the application by a deadline τmax. The second one
constrains the maximum temperature Q : Ω → R of the platform by qmax

where ρburn is an acceptable probability of burning the chip. The third one
constrains (from below) the lifetime L : Ω → R of the system by Lmin where
ρwear is an acceptable probability of premature failure due to wear.

The first constraint in Equation 5.16 is deterministic. On the other hand,
the other two constraints are probabilistic, since they are based on stochastic
quantities. In the very last constraint, we set an upper bound on the expecta-
tion of L. It should be noted that this expectation is a random variable per se
due to the nested structure of the reliability model discussed in Remark 5.4.

In this section, the quantity of interest g in Figure 5.2 is the vector

g = (E,Q,L) (5.17)

where the first element corresponds to the total energy consumption; the sec-
ond one is themaximum temperature; and, with a slight abuse of notation, the
third one is the parameters of the reliability model characterizing the lifetime
(they are denoted by g in Section 2.4 and Section 5.11). Each element implic-
itly depends on S and u. In Algorithm 5.1, Algorithm G is a subroutine that
transforms z into u, makes a call to Algorithm 5.2, and processes the resulting
power and temperature profiles as required in order to compute the above g.

The construction of a surrogate at Stage 3 is standard; see Section 5.6.3.
On the other hand, the post-processing stage, Stage 4, is worth discussing.

5.12.2 Post-Processing

In this context, the post-processing stage concerns the usage of expansions
of Equation 5.17 inside an optimization procedure whose objective and con-
straints are the ones shown in Equation 5.15 and Equation 5.16, respectively.

We begin by delineating the optimization procedure itself. Similarly to Sec-
tion 3.6, wemake use of a genetic algorithm [97]. Each chromosome contains
2nt genes that encode a mapping of the tasks onto the processing elements
and a set of priorities for the tasks. The population contains 4nt individuals
that are initialized using uniform distributions. The parents for the next gen-
eration are chosen by a tournament selection with the number of competitors
equal to 20% of nt. A one-point crossover is then applied to 80% of the par-
ents. Each parent undergoes a uniform mutation where each gene is altered
with probability 0.01. The top 5% of individuals always survive. The stopping
condition is the absence of improvement within 10 successive generations.

89

5. Analysis and Design under Process Uncertainty

Let us now turn to the evaluation of the fitness of a chromosome, which
is where pc expansions come into play. First, the information encoded in the
chromosome is fed to a list scheduler [1], and the scheduler produces a sched-
ule S . We then check the timing constraint (the first one in Equation 5.16),
which does not require any uncertainty analysis. If it is violated, we set the
fitness to the amount of this violation relative to the constraint—that is, to the
difference between the actual end-to-end delay and the deadline τmax divided
by τmax—and add a large constant C. If the timing constraint is satisfied, we
performour uncertainty analysis and proceed to checking the temperature and
lifetime constraints. If any of them is violated, we set the fitness to the total
relative amount of violation plus C/2. If all the constraints are satisfied, the
fitness of the chromosome is set to the expected energy consumption.

The aforementioned examination of the temperature and lifetime con-
straints as well as the evaluation of the expected energy consumption are un-
dertaken by means of a pc expansion of Equation 5.17 following the descrip-
tion given in Section 5.6.4. Specifically, the two probabilities needed in Equa-
tion 5.16 are estimated via sampling the lightweight polynomial surrogate. By
contrast, the expectation in Equation 5.15 requires no sampling and is straight-
forwardly computed using the analytical formula shown in Equation 5.8.

Remark 5.5. In order to speed up the optimization process, we use caching and
parallel computing. The fitness value of each evaluated chromosome is stored
in memory and reused whenever a chromosome with the same set of genes is
encountered, and unseen (not cached) individuals are assessed in parallel.

5.13 Energy Optimization: Illustrative Application

In order to give a better sense of the approach to reliability analysis and op-
timization presented in Section 5.11 and Section 5.12, we consider a concrete
application, meaning that we specify the uncertain parameters and discuss the
accompanying computations. This application is also utilized for the quanti-
tative evaluation of our technique presented in the next section, Section 5.14.

5.13.1 Problem Formulation

Assume that the structure of the reliability modelR(·|g) of the system at hand
is the one given in Equation 2.6 where each individual reliability function
Ri(·|gi) is the one shown in Equation 2.8 with its own parameters ηi and βi.

During each iteration, the temperature of processing element i exhibits nc,i
cycles. Each cycle generally has different characteristics and hence causes a dif-
ferent amount of damage to the processing element. This aspect is accounted
for by adjusting ηi as shown inEquation 2.11. The shape parameterβi is known
to be indifferent to temperature [13]. For simplicity, assume that βi does not
depend on process parameters either, and that βi = β for i = 1, . . . , np.

90

5.13. Energy Optimization: Illustrative Application

Under the above assumptions, Remark 2.1 applies, and the lifetime L :

Ω→ R of the system has a Weibull distribution as follows:

L|(η, β) ∼Weibull(η, β)

where η is the one given in Remark 2.1 combined with Equation 2.11. Even
though the reliability model has two parameters, only one of them is uncertain
to the designer, namely η. Therefore, we treat the model as if it was parame-
terized only by η. The shape parameter β is assumed to be implicitly given.

In the case of reliability analysis under process variation without any ac-
companying exploration of the design space, one can proceed to constructing
a pc expansion of η. Having obtained this lightweight surrogate, the reliability
of the system can be studied from various perspectives. In the current scenario,
however, the quantity of interest g is the one given in Equation 5.17, since it
allows for evaluating the objective function and constraints defined in Equa-
tion 5.15 and Equation 5.16, respectively. In Equation 5.17, the component
denoted by L stands for the parameterization of the reliability model; conse-
quently, it is η in the illustrative application developed in this section.

Let us now turn our attention to the uncertain parameters u of the prob-
lem being addressed. We focus on two crucial process parameters: the effec-
tive channel length and gate oxide thickness. Each processing element is then
assigned two random variables corresponding to the two process parameters,
which means that nu = 2np in the current example; see also Section 5.3.

Remark 5.6. The variability in a process parameter at a spatial location can
be modeled as a composition of several parts—such as inter-lot, inter-wafer,
inter-die, and intra-die variations—which is demonstrated in Section 5.8. In
this section, we illustrate a different approach. From a mathematical perspec-
tive, it is sufficient to consider only one random variable per location with an
adequate distribution and correlations with respect to the other locations.

Based on Section 5.6.1, the parameters u are assumed to be given as a set
of marginal distributions and a correlation matrix denoted by {Fi}nu

i=1 and
Corr(u), respectively. Note that the number of distinct marginals is only two,
since np components of u correspond to the same process parameter.

Both process parameters, the effective channel length and gate oxide thick-
ness, correspond to Euclidean distances; they take values on bounded inter-
vals of the positive half of the real line. Consequently, similarly to Section 5.8,
we model the two process parameters using the four-parameter family of beta
distributions shown in Equation 5.12. Without loss of generality, the param-
eters are assumed to be independent of each other, and the correlations be-
tween those elements of u that correspond to the same process parameter are
assumed to be given by the correlation function shown in Equation 4.4.

The process parameters manifest themselves in the calculations associated
with the power model shown in Equation 5.14 through static power. Analo-
gously to Section 5.8, the modeling here is based on spice simulations of a

91

5. Analysis and Design under Process Uncertainty

series of cmos invertors. The invertors are taken from the 45-nm open cell li-
brary byNanGate [107] and configured according to the 45-nm ptmhpmodel
[108]. The simulations are performed on a fine-grained and sufficiently broad
three-dimensional grid comprising the effective channel length, gate oxide
thickness, and temperature; the results are tabulated. An interpolation algo-
rithm is subsequently employed whenever static power is to be evaluated at a
particular point within the range of the grid. The output of thismodel is scaled
up to account for about 40% of the total power consumption [75]. Regarding
temperature, the thermal rc circuit utilized for dynamic steady-state analysis
is constructed by virtue of HotSpot [100] as described in Section 2.3.

At this point, the two outputs of Stage 1 are now specified.

5.13.2 Probability Transformation

At Stage 2 in Figure 5.2, the uncertain parametersu are transformed into a vec-
tor of independent random variables z via a suitable transformation T. Specif-
ically, we use the one given in Equation A.8, which also includes model order
reduction. Unlike Section 5.8, in this section, we let z obey the standard Gaus-
sian distribution and, therefore, tailor T accordingly; see Appendix A.4.

5.13.3 Surrogate Construction

Since the auxiliary variables z = (zi)
nz
i=1 are Gaussian, the polynomial basis

considered at Stage 3 is to be composed of Hermite polynomials, which is the
exact scenario described in Appendix A.7. The variables also tell us how to
approach numerical integration needed for evaluation of the coefficients of
pc expansions: since we are interested in integrals with respect to the stan-
dard Gaussian measure, Gauss–Hermite quadratures [68] are worth consid-
ering. These quadratures are especially efficient, since they belong to the class
of Gaussian quadratures and thus inherit their properties; see Appendix A.5.

Lastly, let us illustrate the Hermite basis. In the case of working with only
one standard Gaussian variable (nz = 1), a second-level pc expansion (lc = 2)
of a three-dimensional quantity of interest g is as follows:

C12 (g) = ĝ(0)ψ(0) + ĝ(1)ψ(1) + ĝ(2)ψ(2)

where {ĝi} ⊂ R3,

ψ(0)(z) = 1,

ψ(1)(z) = z1, and

ψ(2)(z) = z21 − 1.

At Stage 4, the expansion is post-processed as described in Section 5.12.

92

5.14. Energy Optimization: Experimental Results

5.14 Energy Optimization: Experimental Results

In this section, we evaluate the performance of our approach to reliability anal-
ysis and optimization presented in Section 5.11 and Section 5.12 considering
the illustrative application described in Section 5.13. The technique for dy-
namic steady-state analysis under process variation delineated in Section 5.10
is also a part of the assessment, since it is included in the reliability model. All
the experiments are conducted on a gnu/Linux machine equipped with 16 In-
tel Xeon E5520 2.27 ghz processors and 24 gb of ram. All the configuration
files used in the experiments are available online at [19].

We consider a 45-nm technological process and rely on the 45-nm open
cell library by NanGate [107] as explained in Section 5.13. The effective chan-
nel length and gate oxide thickness are assumed to have nominal values equal
to 22.5 nm and 1 nm, respectively. Based on the International Technology
Roadmap for Semiconductors [54], each parameter is assumed to deviate by
up to 12% of its nominal value; the percentage is treated as three standard
deviations, and the assumption should be understood accordingly. Regarding
the correlation function in Equation 4.4, the weight coefficient w is set to 0.5,
and the length-scale parameters ℓSE and ℓOU are set to half the size of the die.
The model order reduction described in Appendix A.4 is set to preserve 95%
of the variance of the problem. The parameter γ used in Equation 5.5, which
controls the anisotropy of pc expansions and integration grids, is set to 0.25.

Heterogeneous platforms and periodic applications are randomly gener-
ated via tgff [34] in such a way that the execution time of each task is uni-
formly distributed between 10 and 30 ms, and its dynamic power between 6
and 20 W. The floorplans of the platforms being considered are regular grids
with each processing element occupying 4 mm2. The sampling interval ∆t of
power and temperature profiles is set to 1 ms. The stopping condition used in
Algorithm 5.2 is that the nrmse between two successive temperature profiles
becomes smaller than 1%, which typically requires 3–5 iterations.

5.14.1 Approximation Accuracy

Our first task is to evaluate the accuracy of the proposed framework. To this
end, in this subsection, the quantity of interest given in Equation 5.17—which
encompasses the total energy consumption, maximum temperature, and pa-
rameterization of the reliability model of the system—is considered in isola-
tion. This quantity plays the key role in the subsequent optimization, since the
optimization objective and constraints depend on it, as discussed previously.

We compare the performance of our technique with that of directmc sam-
pling applied to the quantity shown in Equation 5.17. The operations per-
formed by direct sampling for one sample are the same as those performed
by our framework for one quadrature point. The only difference is that no
model order reduction of any kind is undertaken prior tomc sampling, which

93

5. Analysis and Design under Process Uncertainty

Table 5.6: Accuracy of the proposed solution with respect to the level of poly-
nomial chaos expansions

lc nc nq ϵE (kld) ϵQ (kld) ϵL (kld)

1 3 5 0.0415 0.1935 0.3390
2 10 21 0.0085 0.0187 0.0320
3 22 69 0.0022 0.0025 0.0046
4 49 193 0.0017 0.0024 0.0033
5 111 589 0.0016 0.0027 0.0037

ensures that the resulting accuracy is not compromised. The number of mc
samples is set to 104, which is a practical assumption based not only on our
experience but also on the literature, as discussed in Section 5.9.

The results are displayed in Table 5.6 where we consider a quad-core plat-
form (np = 4) with 10 randomly generated applications and vary the level of
polynomial expansions lc from one to five. The errors for the three compo-
nents of g = (E,Q,L) are denoted by ϵE , ϵQ, and ϵL, respectively. Each error
metric shows the distance between the empirical probability distributions pro-
duced by our approach and the ones produced by direct sampling. The mea-
sure of this distance is the Kullback–Leibler divergence (kld) [42, 46] where
the results of direct sampling are treated as the true ones. The kld takes non-
negative values and reaches zero only when two distributions are equal almost
everywhere [35]. In general, the errors decrease as lc increases. This trend,
however, is not monotonic for pc expansions of high levels; see ϵQ and ϵL for
lc = 5 in Table 5.6. This observation can be ascribed to the random nature of
sampling and to the reduction procedures that we undertake in order to gain
speed; they reasonably impose limitations on the accuracy that can be attained
by polynomial surrogates. Table 5.6 additionally contains the number of poly-
nomial terms nc and the number of quadrature points nq that correspond to
each value of lc. We have performed the above experiment for platforms with
both fewer and more processing elements and have observed similar results.

Based on the figures reported in Table 5.6, we consider the results delivered
by third-level pc expansions, where theklddrops to the third decimal place for
all the three quantities, sufficiently accurate. Therefore, we fix lc—and hence
lq , as they are kept synchronized—to three for the rest of the experiments.

5.14.2 Computational Speed

Our task now is to assess the speed of the proposed solution. To this end, we
consider the same setup as the one outlined in the previous subsection. Ta-
ble 5.7 displays the time needed to perform one characterization of g for the
number of processing elements np increasing from 2 to 32. Note that, in this
experiment, no parallel computing is utilized. It can be seen that the computa-

94

5.14. Energy Optimization: Experimental Results

Table 5.7: Computational speed of the proposed solution with respect to the
number of processing elements

np nz nc nq Time (s) Speedup (×)

2 4 19 57 0.18 175.44
4 6 22 69 0.26 144.93
8 8 27 81 0.73 123.46
16 10 30 93 1.28 107.53
32 10 33 101 2.23 99.01

tion time ranges from a fraction of a second to around two seconds. More im-
portantly, Table 5.7 provides information about a number of complementary
quantities that are of great interest to the designer, which we discuss below.

The primary quantity to pay heed to is the number of random variables nz
preserved after the reduction procedure noted in Section 5.6.2 and described
in Appendix A.4. Without this reduction, nz would be 2np, since there are two
process parameters per processing element; recall Section 5.13. It can be seen
in Table 5.7 that there is no reduction in the case of the dual-core platform,
whereas around 80% of the stochastic dimensions are eliminated in the case
of the platform with 32 processing elements. One can also note that nz is the
same for the last two platforms. The magnitude of reduction is determined
solely by the assumed correlation structure (see Section 5.13) and the floorplan
of the platform at hand, which we also observe and discuss in Section 5.9.

Another important quantity displayed in Table 5.7 is the number of quadra-
ture points nq . This number is the main indicator of the computational ex-
pense of our probabilistic analysis: it is equal to the number of times Algo-
rithm G in Algorithm 5.1 must be executed in order to construct a pc expan-
sion of the quantity of interest g, which, in this case, is the one in Equation 5.17.
Note that nq is very low. In order to substantiate this, the last column of Ta-
ble 5.7 shows the speedup of our approachwith respect to 104 mc samples. The
proposed solution is 100–200 times faster while delivering highly accurate re-
sults, as discussed earlier. It should be noted that the comparison has been
drawn based on the number of evaluation points rather than on the wall-clock
time, since the relative cost of other computations is negligible.

To summarize, the proposed framework for probabilistic analysis of elec-
tronic systems under process variation has been assessed using the composite
quantity given in Equation 5.17. The results shown in Table 5.6 and Table 5.7
indicate that our approach is both accurate and computationally efficient.

5.14.3 Optimization Effectiveness

In this subsection, the results of the optimization procedure formulated in Sec-
tion 5.12 are reported. To reiterate, the objective is to minimize the expected

95

5. Analysis and Design under Process Uncertainty

Table 5.8: Computational speed of the probabilistic and deterministic opti-
mization procedures as well as the failure rate of the latter

Probabilistic case Deterministic case
np Time (min) Time (min) Failure (%)

2 1.07 0.67 40
4 5.38 1.99 60
8 16.65 3.89 70
16 56.23 7.54 100
32 341.08 9.26 100

energy consumption as shown in Equation 5.15 while satisfying a set of con-
straints on the maximum end-to-end delay, maximum temperature, and min-
imum lifetime as shown in Equation 5.16. For optimization, we employ a ge-
netic algorithm and evaluate candidate solutions in parallel using 16 cores.

The goal of this experiment is to justify the following assertion: reliability
analysis has to account for the effect of process variation on temperature. To
this end, for each problem (a pair of a platform and an application), we run the
optimization procedure twice: the first run assumes the setup discussed in this
section so far, and the second run treats the objective in Equation 5.15 and the
constraints in Equation 5.16 as deterministic. Specifically, the second run as-
sumes that temperature is deterministic and can be computed using the nomi-
nal values of the process parameters. Therefore, in this deterministic case, only
one execution of the system is needed in order to evaluate a chromosome’s fit-
ness. Equation 5.15 and Equation 5.16 become, respectively,

min
S
E(S)

and

τ(S) ≤ τmax,

Q(S) ≥ qmax, and

L(S) ≤ Lmin.

We consider five platforms with the number of processing elements np tak-
ing values in {2i}5i=1 and 10 applications with the number of tasks nt equal to
20np; therefore, there are 50 problems in total. In Equation 5.16, ρburn and
ρwear are set to 0.01. Due to the diversity of the problems, τmax, qmax, and Lmin

are found individually for each problem in order to ensure that their values
are sensible to the subsequent optimization. For instance, qmax ranges from
90°C to 120°C, depending on the problem. Note, however, that these three
parameters stay the same in both the probabilistic and deterministic cases.

The results are reported in Table 5.8. The most important message is in
the last column. Failure refers to the percentage of the solutions produced by

96

5.14. Energy Optimization: Experimental Results

the deterministic optimization that, after being re-evaluated using our prob-
abilistic approach (that is, after taking process variation into account), have
been found to violate the probabilistic constraints given in Equation 5.16. For
example, for the quad-core platform, 6 out of 10 schedules that are proposed
by the deterministic approach violate the constraint on the maximum temper-
ature or the minimum lifetime (or both) when process variation is taken into
consideration. As the problem becomes more and more complex, the failure
rate attains higher and higher values. With 16 and 32 processing elements
(320 and 640 tasks, respectively), all the deterministic solutions violate the
imposed constraints. Moreover, the difference between the acceptable 1% of
burn and wear (ρburn = ρwear = 0.01) and the actual probability of burn and
wear is found to be as high as 80% in some cases, which is unacceptable.

In addition, we take a close look at those few deterministic solutions that
have passed the probabilistic re-evaluation and observe that the reported re-
duction in the maximum temperature and energy consumption as well as the
reported increase in the lifetime are overoptimistic. To elaborate, the predic-
tions produced by the deterministic optimization, which neglects process vari-
ation, are compared with the expected values obtained when process variation
is taken into account. The comparison shows that the expected energy con-
sumption and temperature are up to 5% higher while the expected lifetime
is up to 20% shorter than the ones estimated by the deterministic approach.
This aspect of the deterministic optimization canmislead the designer. Hence,
when studying those characteristics of electronic systems that are concerned
with power, temperature, and reliability, ignorance of the effect of process vari-
ation can severely compromise the associated design decisions, making them
less profitable in the best case and dangerous in the worst case.

Let us now comment on the optimization time shown in Table 5.8. It can
be observed that our framework takes from around one minute to six hours
(utilizing 16 cores) in order to perform the optimization, and that the deter-
ministic technique is 2–40 times faster. However, the price to pay when rely-
ing on the latter is quite high, as discussed above. The deterministic approach
is blind-guessing with highly unfavorable odds of succeeding. Therefore, the
computation time of our framework is considered reasonable and affordable.

Lastly, we perform an experiment targeted at investigating the impact of
the lifetime constraint in Equation 5.16 on the reduction in the expected en-
ergy consumption. To this end, we run our probabilistic optimization (all 50
problems) without the reliability constraint and compare the corresponding
results with those obtained when the lifetime constraint is included. We ob-
serve that the expected energy consumption is higher when the constraint is
taken into account; however, the difference vanishes when the complexity of
the problem increases. On average, the cost of the lifetime constraint is be-
low 5% in terms of energy consumption. Without the constraint, however, no
(probabilistic) guarantees on the system’s lifetime can be given.

97

5. Analysis and Design under Process Uncertainty

5.15 Conclusion

As emphasized throughout the thesis, electronic-system designs that ignore
uncertainty are both inefficient and unreliable. Acknowledging this exigent
concern, we have developed a flexible framework for analysis of electronic sys-
tems that are subject to process variation. The framework is capable of mod-
eling diverse system-level quantities that are dependent on diverse process pa-
rameters, which, in turn, obey diverse probability distributions. Our method-
ology delivers a lightweight surrogate for the quantity being analyzed, thereby
providing the designer with a computationally efficient means of calculating
the probability distribution and other characteristics of this quantity.

Leveraging our generalmethodology, we have presented a technique aimed
at quantifying transient power and temperature variations in electronic sys-
tems under process uncertainty. The technique has been used to address the
variability in the effective channel length, which is an area of particular im-
portance. We have drawn a comparison with direct sampling, which has con-
firmed the efficiency of our technique in terms of accuracy and speed.

We have also presented a process-variation-aware technique for dynamic
steady-state power and temperature analysis and have proposed a technique
for reliability analysis that seamlessly accounts for the variability in process
parameters and, in particular, for the impact of process variation on the op-
erating temperature. In this case, we have compared our performance with
that of direct sampling by considering the influence not only of the effective
channel length but also of the gate oxide thickness. The results have shown
the efficiency of our solution with respect to both accuracy and speed.

The low computational demand featured by the proposed framework im-
plies that our uncertainty analysis can be readily performed inside design-
space-exploration loops, including those targeted at energy and reliabil-
ity optimization with temperature-related constraints under process vari-
ation. This important virtue has been demonstrated by considering an
energy-driven probabilistic optimization procedure under temperature- and
reliability-related constraints. It has been shown that temperature has to be
treated as a stochastic quantity in order to make electronic systems reliable.

Finally, note that, even though our framework has been illustrated by con-
sidering the effective channel length, gate oxide thickness, and a number of
specific quantities of interest, it can be easily applied to other problems that
require process variation to be effectively and efficiently taken into account.

98

6
Analysis under Workload
Uncertainty

Starting with this chapter, we move our focus from process uncertainty to
workload uncertainty. The latter has its own idiosyncrasies and, therefore,
poses its own challenges to the designer of electronic systems.

6.1 Introduction

Similarly to Chapter 5, we propose a design-time system-level framework for
analysis of electronic systems that depend on uncertain parameters. In this
chapter, however, the source of uncertainty being considered is workload. As
is the case with sampling methods (see Section 1.5), our technique treats the
system at hand as a “black box” and thus is straightforward to apply in prac-
tice, since no handcrafting is required, and existing code need not be changed.
Hence, the quantities that the framework is able to address are diverse, includ-
ing those that are concerned with timing-, power-, and temperature-related
characteristics of applications running on heterogeneous platforms.

In contrast to Chapter 5 and sampling methods, the framework presented
in this chapter explores and exploits the nature of the problem—that is, the
way the quantity of interest depends upon the uncertain parameters—by ex-
ercising the aforementioned “black box” at an adaptively chosen set of points.
The adaptivity that we leverage is hybrid [55]: it is sensitive to both global
(on the level of individual stochastic dimensions [64]) and, more importantly,
local (on the level of individual points [76]) variations. This means that the
framework is able to benefit from any peculiarities that might be present in
the stochastic space, the space of the uncertain parameters. The adaptivity is
the primary feature of our technique, which we discuss and illustrate next.

99

6. Analysis under Workload Uncertainty

Uncertain parameter
0.0 0.2 0.4 0.6 0.8 1.0

Adaptive interpolation
Exact solution
Polynomial chaos

0.5

1.0

0.0E
nd

-t
o-

en
d

de
la

y
(s

)

Figure 6.1: Example of the polynomial chaos decomposition and adaptive hi-
erarchical interpolation applied to a nonsmooth quantity

6.2 Motivational Example

Due to its nature, the variability originating from process variation is typically
smooth and well behaved. In such cases, uncertainty quantification based on
polynomial chaos (pc) expansions [120] and other approximation techniques
relying on global polynomials generally work well, as demonstrated in Chap-
ter 5. On the other hand, the variability coming from sources such as workload
often has steep gradients and favors nondifferentiability and even discontinu-
ity. In such cases, pc expansions and similar techniques fail: they require an
extremely large number of evaluations of the quantity of interest in order to
deliver an acceptable level of accuracy and are consequently not worth it.

In order to illustrate this concern, let us consider an example. Suppose that
our system has only one processing element, and it is running an application
with only one task. Suppose also that the task has two branches and takes ei-
ther one depending on the input data. Assume that one branch takes 0.1 s to
execute and has probability 0.6, and the other branch takes 1 s and has prob-
ability 0.4. Our goal is to find the distribution of the end-to-end delay of the
application. In this example, the quantity of interest is the end-to-end delay,
and it coincides with the execution time of the task; hence, we already know
the answer. Let us pretend we do not and try to obtain it by other means.

Suppose the above scenario is modeled by a uniformly distributed random
variable u : Ω→ [0, 1]. The execution time of the task (the end-to-end delay of
the application) is 0.1 s if u ∈ [0, 0.6], and it is 1 s if u ∈ (0.6, 1]. The response in
this case is a step function, which is illustrated by the orange line in Figure 6.1.

First, we try to quantify the end-to-end delay by constructing and subse-
quently sampling a pc expansion founded on the Legendre polynomial basis
[120]; see Appendix A.7. The green line in Figure 6.1 shows a ninth-level pc
expansion (lc = lq = 9), which uses 10 points (nq = 10). It can be seen that
the approximation is poor—not to mention negative execution times—which

100

6.3. Problem Formulation

means that the follow-up sampling will also yield a poor approximation of the
true distribution. The observed oscillating behavior is the well-known Gibbs
phenomenon stemming from the discontinuity of the response. Regardless of
the number of points spent, the oscillations will never go away completely.

Let us now see how the framework developed in this chapter solves the
same problem. For the purpose of this experiment, our technique is con-
strained to make use of the same number of points as the pc expansion does.
The result is the blue curve in Figure 6.1, and the adaptively chosen points
are plotted on the horizontal axis. It can be seen that the approximation is
good, and, in fact, it would be indistinguishable from the true response with a
few additional points. Note that the adaptive procedure started to concentrate
collocation nodes at the jump and paid little attention to the less interesting
regions on either side of the jump. Having constructed such a representation,
one can proceed to the calculation of the probability distribution of the quan-
tity of interest, which, in general, should be done via sampling followed by such
techniques as kernel density estimation [46]. The crucial point to note is that,
analogously to the pc expansions leveraged in Chapter 5, this follow-up sam-
pling does not involve the original system in any way, which implies that the
operation costs practically nothing in terms of computation time.

The example described above illustrates the fact that the proposed frame-
work is well suited for nonsmooth response surfaces. More generally, the adap-
tivity featured by our technique allows for a reduction in the costs associated
with probabilistic analysis of the quantity under consideration as measured by
the number of times the quantity needs to be evaluated in order to achieve a
certain level of accuracy. Themagnitude of reduction depends on the problem
and can be substantial when the problem is well disposed to adaptation.

6.3 Problem Formulation

Consider an electronic system composed of twomajor components: a platform
and an application. The platform is a collection of heterogeneous processing
elements as defined in Section 2.1, whereas the application is a collection of
interdependent tasks. The designer is interested in studying a quantity g that
characterizes the system at hand from a certain perspective. Examples of g
include the execution delay of the application or a specific task as well as the
total energy consumption of the platform or a specific processing element.

The quantity of interest g depends on a set of parameters u that are uncer-
tain at the design stage. Examples of u include the amount of data that the
application must process, execution times of the tasks, and properties of the
environment. The parameters u are given as a random vector u : Ω → Rnu ,
which is defined on (Ω,F ,P) as in Appendix A.2, with an arbitrary but known
distribution, whose cumulative distribution function (cdf) is denoted by F .

101

6. Analysis under Workload Uncertainty

The dependency of g on u implies that g is random to the designer. For a
given outcome of u, however, the evaluation of g is assumed to be purely de-
terministic. This operation is traditionally performed by an adequate system
simulator, and it is considered doable but computationally expensive.

Our objective in this chapter is to develop a framework for calculating the
probability distribution of the quantity of interest g dependent on the uncer-
tain parametersu so that this framework is able to efficiently handle nondiffer-
entiable and potentially discontinuous dependencies between g and u, which
constitute an important class of problems for electronic-system design.

6.4 PreviousWork

As noted in Section 1.5, a sampling method would be a reasonable solution to
probabilistic analysis of electronic systems if these systems were computation-
ally inexpensive to evaluate. In order to eliminate or reduce the costs associ-
ated with direct sampling, a number of techniques have been introduced.

We remark first that our work presented in Chapter 5 and thus the prior
studies discussed in Section 5.4 are of relevance to this section. However, since
those techniques are designed for a different source of uncertainty, namely pro-
cess variation, we do not discuss them separately here; see also Section 6.2.

In the case of workload variation, timing analysis has attracted themost at-
tention [88]. A seminal work on response time analysis of periodic tasks with
random execution times on uniprocessor systems is reported in [32]. A novel
analytical solution to this problem is presented in [105]; the solution makes
milder assumptions and allows for addressing larger, previously unsolvable
problems. The framework proposed in [96]makes use of real-time calculus in
order to facilitate task scheduling by delivering probabilistic bounds on the re-
sources provided to a task flow and the resources required by this task flow. In
[98], the authors consider applications characterized by probabilities of execu-
tion and propose a heuristic that searches a design that has the least expected
average power consumption. Independent periodic tasks with probabilistic ex-
ecution times are analyzed in [124]; the work presents a scheme for optimistic
reliability-aware power management targeted at energy minimization.

Studying the literature on probabilistic analysis of electronic systems re-
lated to this chapter (and Chapter 5 for that matter), one can note a pro-
nounced trend: the generality and straightforwardness of sampling methods
tend to be lost. The proposed techniques typically (a) require restrictive as-
sumptions to be fulfilled, such as the absence of correlation; (b) are tailored
to one concrete quantity of interest, such as the response time; and (c) re-
quire substantial effort in order to be deployed. However, one should keep
in mind what is practical. First, although additional assumptions might make
the mathematics analytically solvable, they often do not hold in reality and
oversimplify the model. An exact analytical solution might also be extremely

102

6.5. Proposed Solution

complex, requiring a lot of computational resources upon evaluation. Further-
more, it is often the case that there is a robust simulator capable of calculating
the quantity under consideration in the deterministic scenario. Switching to
probabilistic analysis based on sophisticated techniques might mean discard-
ing this battle-tested code and starting from scratch, which is wasteful.

Some of the techniques mentioned earlier, in fact, preserve the generality
and straightforwardness of sampling methods. An example is our probabilis-
tic framework presented in Chapter 5. This is because the construction of pc
expansions in this framework is undertaken bymeans of nonintrusive spectral
projections [120], which, similarly to sampling methods, do not need to look
inside the “black box.” However, as described in Section 6.2, nonsmoothness
is a serious problem for global approximation based on polynomials. In partic-
ular, the convergence rate of pc expansions deteriorates substantially in such
cases, requiring one to partition the stochastic space in order to alleviate the
problem. Therefore, it is not straightforward to apply techniques such as the
one in Chapter 5 to sources of uncertainty that exhibit nonsmoothness.

To conclude, the available techniques for probabilistic analysis of electronic
systems are restricted in use. A flexible and easy-to-deploy framework capable
of addressing nonsmooth uncertainty-quantification problems is needed.

6.5 Proposed Solution

The general solution strategy here is similar to the one outlined in Section 5.5.
Recall first that making use of a sampling method is a compelling approach to
uncertainty quantification. Wewould readily apply such amethod to study the
quantity of interest g if evaluating g had only a small cost, which, most of the
time, it does not. Our solution to this quandary is to construct a lightweight
representation of the heavy g and study this representation instead of g.

The surrogates that we build in this chapter are based on hierarchical in-
terpolation with hybrid adaptivity, which is developed in [55, 64, 76]. In this
case, g is evaluated at a number of strategically chosen collocation nodes, and
any other values of g are reconstructed on demand, without involving g, using
a set of basis functions that mediate between the collected values of g. The
benefit of this approach is in the number of invocations of the quantity g: only
a few evaluations of g are needed, and the rest of the analysis is powered by the
constructed interpolant, which, in contrast to g, has a negligible cost.

The proposed framework is efficient at characterizing the impact of work-
load uncertainty and is straightforward to use in practice. The effectiveness
of our approach is due to the aforementioned powerful approximation engine,
which enables tackling diverse design problems while keeping the associated
costs low. The usage of our approach is streamlined, since it has the same low
entrance requirements as sampling techniques, which is also the case with our
framework in Chapter 5: one only has to be able to evaluate the quantity of

103

6. Analysis under Workload Uncertainty

interest given a particular outcome of the uncertain parameters. Moreover,
it can be utilized in scenarios with limited knowledge of the joint probability
distribution of the uncertain parameters, which are common in practice.

The solution process has four stages, which reflect the ones depicted in Fig-
ure 5.2. At Stage 1, the quantity of interest g and the uncertain parameters u
are decided upon by the designer. At Stage 2, g is reparameterized in terms
of an auxiliary random vector z extracted from u, which is described in Sec-
tion 6.6. At Stage 3, an interpolant of g is constructed by considering g as a
deterministic function of z and evaluating g at a small set of carefully chosen
points, which is detailed in Section 6.7. At Stage 4, the constructed interpolant
of g is post-processed in order to calculate the desired statistics about g; in par-
ticular, the probability distribution of g is estimated by applying an arbitrary
sampling method to the interpolant, which is discussed in Section 6.8.

The first stage of the framework is problem specific, and it will be exempli-
fied in Section 6.9. In the following, we proceed directly to the second stage,
which together with the third one should be approached with great care, since
interpolation of multivariate functions is a challenging undertaking.

6.6 Probability Transformation

At Stage 2 of the framework, we change the parameterization of the prob-
lem from the random vector u : Ω → Rnu to an auxiliary random vector
z : Ω → Rnz such that the support of the probability density function (pdf)
of z is the unit hypercube [0, 1]nz , and that nz has the smallest value required
to retain the desired level of accuracy. The first task is standardization, which
is done primarily for convenience. The second one is model order reduction,
which identifies and eliminates excessive complexity and hence speeds up the
subsequent solution process. The overall transformation is denoted by

u = T (z) (6.1)

where T : [0, 1]nz → Rnu . The quantity of interest g can now be computed as

g(u) = (g ◦ T)(z) = g(T(z)).

The attentive reader might already have a suitable candidate for T: it is
the one described in Appendix A.4, consolidated in Equation A.8, and utilized
throughout Chapter 5 starting from Section 5.6.2. The way this transforma-
tion is applied in this chapter will be discussed further in Section 6.9.

6.7 Surrogate Construction

At Stage 3, an approximation of the quantity of interest is constructed using
the interpolation algorithm presented in this section. The algorithm consti-
tutes the core of the framework proposed in this chapter, and it features a

104

6.7. Surrogate Construction

sparse structure, hierarchical construction, and hybrid adaptivity. The ben-
efits of these characteristics are interconnected and can be summarized as fol-
lows: (a) the ability to efficiently address multidimensional problems, (b) the
ability to progressively refine the approximation, and (c) the ability to perform
this refinement strategically by virtue of fine-grained error control.

Hierarchical interpolation is introduced in Appendix A.6, and here we rely
heavily on the results discussed in that section. The mathematics presented in
Appendix A.6 and below are based on the development in [55, 64, 76].

Consider the quantity of interest g as a function of z via T as shown in
Section 6.6. Assume that g belongs to C([0, 1]nz), the space of continuous func-
tions on [0, 1]nz ; the assumption is not limiting in practice. As shown in Ap-
pendix A.6, g can be approximated by means of the following interpolant:

g ≈ Anz

ls
(g) = Anz

ls−1(g) +
∑

i∈∆Inz
ls

∑
j∈∆Jnz

i

∆(g ◦ T)(xij)eij (6.2)

where i ∈ Nnz
0 is called a level index; j ∈ Nnz

0 is called an order index;
{xij} and {eij} are collocation nodes and basis functions, respectively; {∆(g ◦
T)(xij)} are hierarchical surpluses defined in Equation A.23; and ∆Inz

ls
and

∆J nz

i are index sets defined in Equation A.18 and Equation A.22, respectively.
Due to the reasons clarified in Section 6.7.3, the interpretation of Equa-

tion 6.2 used in this chapter is different from the one used in Appendix A.6.
Specifically, ls ∈ N0 no longer represents an interpolation level but rather an
interpolation step. Accordingly,Anz

ls
(g) represents the interpolant obtained by

a certain interpolation step. In addition, all the index sets discussed here are
generally subsets of their full-fledged counterparts defined in Appendix A.6.

Let us now turn to the choice of collocation nodes and basis functions.

6.7.1 Collocation Nodes

In order to gain computational efficiency, the integration grid should be fully
nested, which is explained in Appendix A.6. Such a grid can be constructed
using the family of Newton–Cotes rules [76]. In one dimension, a Newton–
Cotes rule is a set of equidistant nodes on [0, 1]. There are two types ofNewton–
Cotes rules: open and closed. The only difference between the two types is that
the latter includes the endpoints (zero and one), whereas the former does not.

Technically, in order to be able to proceed to hierarchical interpolation,
the chosen rules have to fulfill a certain condition, which is discussed in Ap-
pendix A.6 and can be seen in Equation A.20. Closed Newton–Cotes rules
satisfy this condition, and they are the ones used in the original version of lo-
cal adaptivity presented in [76]. The open rules, on the other hand, do not
fulfill the condition close to the boundaries of the unit interval. However, ac-
cording to our experience, open Newton–Cotes rules are a viable option, since
they perform well in practice, which is also noted in [64]. In fact, we are able
to obtain better results with open rules and, therefore, present them here.

105

6. Analysis under Workload Uncertainty

0.25 0.50 0.750.00 1.00

Level 0

Level 1

Level 2

Figure 6.2: First three levels of the one-dimensional open Newton–Cotes grid
with new nodes (solid) and inherited nodes (hollow)

The open Newton–Cotes rule of level i ∈ N0 is

X 1
i =

{
xij : j ∈ J 1

i

}
where

xij =
j + 1

ni + 1
,

J 1
i = {i− 1} ni

i=1, and

ni = 2i+1 − 1.

Figure 6.2 depicts the first three levels of this rule. It can be seen that the
number of nodes grows as 1, 3, 7, and so on, and that the rule is fully nested. In
multiple dimensions, collocation nodes are formed as shown in Equation A.15.

6.7.2 Basis Functions

The basis functions that go hand in hand with open Newton–Cotes rules are
piecewise linear functions. For i = 0 and j = 0,

e00(x) = 1.

For i > 0 and j = 0 (close to the left endpoint),

ei0(x) =

{
2− (ni + 1)x, if x < 2

ni+1 ;

0, otherwise.

For i > 0 and j = ni − 1 (close to the right endpoint),

ei,ni−1(x) =

{
(ni + 1)x− ni + 1, if x > ni−1

ni+1 ;

0, otherwise.

In other cases,

eij(x) =

{
1− (ni + 1) |x− xij |, if |x− xij | < 1

ni+1 ;

0, otherwise.

106

6.7. Surrogate Construction

0.25 0.50 0.750.00 1.00

1

2

0

Figure 6.3: First three levels of the one-dimensional piecewise linear basis

The basis functions that correspond to the first three levels of one-dimensional
interpolation are depicted in Figure 6.3. In multiple dimensions, basis func-
tions are formed as shown in Equation A.15, which results in

eij(x) =

n∏
k=1

eikjk(xk).

Additionally, let us calculate the volumes (the integrals over the whole do-
main) of the aforementioned piecewise linear functions; these volumes are re-
quired in the continuation. For i = 0 and j = 0,

w00 = 1.

For i > 0 and j ∈ {0, ni − 1},

wij =
2

ni + 1
.

In other cases,

wij =
1

ni + 1
.

The volumes of multidimensional basis functions are products of the corre-
sponding one-dimensional volumes as follows:

wij =

nz∏
k=1

wikjk . (6.3)

Now, imagine a function that is nearly flat on the first half of [0, 1] and
rather irregular on the other. Under these circumstances, it is natural to expect
that, in order to attain the same accuracy, the first half should require many
fewer collocation nodes than the other one; recall the example given in Fig-
ure 6.1. However, if we followed the usual construction procedure described
in Appendix A.6, we would not be able to benefit from this idiosyncrasy. Both
sides would be treated equally, and all the nodes of each interpolation level
would be added to the interpolant, which is wasteful. The solution to this prob-
lem is to make the interpolation algorithm adaptive, which we discuss next.

107

6. Analysis under Workload Uncertainty

6.7.3 Hybrid Adaptivity

In order to make the algorithm adaptive, we first need to decide on a criterion
used for measuring the accuracy of the interpolant Anz

ls
(g) in Equation 6.2 at

any point in [0, 1]nz . Then, when refining the interpolant, instead of evaluating
the quantity of interest g at all possible nodes, we choose only those that are
located in the regions with poor accuracy as indicated by the criterion.

We already have a good foundation for building the above-mentioned cri-
terion. Hierarchical surpluses, which are introduced in Appendix A.6 and de-
fined in Equation A.23, are natural indicators of the interpolation error: they
are the difference between the true values of g and those estimated byAnz

ls
(g) at

the nodes of the underlying integration grid. Therefore, hierarchical surpluses
can be recycled in order to effectively identify problematic regions.

We proceed as follows. First, a score is assigned to each node xij or, equiv-
alently, to each pair of a level index i and an order index j as follows:

sij = |∆(g ◦ T)(xij)wij | (6.4)

where∆(g◦T)(xij) is the surplus at the node as defined in Equation A.23, and
wij is the volume of the corresponding basis function as shown inEquation 6.3.
The above score is utilized for guiding the algorithm as explained below.

Each hierarchical interpolant Anz

ls
is characterized by a set of level indices

Inz

ls
, and each level index i ∈ Inz

ls
by a set of order indices ∆J nz

i . At each
interpolation step ls ∈ N0, a single level index

ils ∈ I
nz

ls−1

is chosen where Inz
−1 = {0}. This index gives birth to ∆Inz

ls
and {∆J nz

i : i ∈
∆Inz

ls
}, forming the increment given on the right-hand side of Equation 6.2.

The level index set ∆Inz

ls
contains so-called admissible forward neighbors

of the chosen ils . The forward neighbors of an index i are given by

{i+ 1k} nz

k=1

where 1k ∈ {0, 1}nz is a vector whose elements are zero except for element k,
which is equal to unity. An index i is called admissible if its inclusion into
the index set Inz

ls
under consideration keeps the set admissible. Finally, Inz

ls
is

admissible if it satisfies the following condition [64]:

i− 1k ∈ Inz

ls

for i ∈ Inz

ls
and k ∈ {1, . . . , nz} where the cases with ik = 0 need no check.

Let us now turn to the content of ∆J nz

i where i = ils + 1k for some k. It
also contains admissible forward neighbors; however, they are order indices,
and their construction is different from the one used in the case of∆Inz

ls
. These

indices are identified by inspecting the backward neighborhood of i, which is

108

6.7. Surrogate Construction

analogous to the forward one but in the other direction. For each backward
neighbor i− 1m and each j ∈ ∆J nz

i−1m
, we first check the condition

si−1m,j ≥ ϵs

where ϵs is a user-defined constant referred to as the score error. If the con-
dition holds, the forward neighbors of j in dimension k are added to ∆J nz

i .
This procedure is illustrated in Figure 6.2 for open Newton–Cotes rules in one
dimension. The arrows emerging from a collocation node connect the node
with its forward neighbors. In general, each node has two forward neighbors
in each dimension. The order indices of these nodes are

(j1, . . . , 2jk , . . . , jnz
) and

(j1, . . . , 2jk + 2, . . . , jnz).

The above refinement procedure should be performed for each level index i ∈
∆Inz

ls
with respect to each dimension k ∈ {1, . . . , nz}.

The choice of ils ∈ I
nz

ls−1 at each step ls in Equation 6.2 is made as follows.
First, each index can be picked atmost once. The rest is resolved by prioritizing
the candidates. It is reasonable to compute the priority of a level index i based
on the scores of the order indices associated with this level index, that is, based
on the scores of J nz

i . We set the priority to the average score

si =
1

#∆J nz

i

∑
j∈∆Jnz

i

sij .

Thus, at each step ls, the index i with the highest si is promoted to ils .
The final question to answer is the stopping condition of the approxima-

tion process in Equation 6.2. Apart from the natural constraints on the max-
imum number of function evaluations and the maximum interpolation level
(the original ls in Appendix A.6), we rely on the following criterion. Given
two additional user-defined constants ϵa and ϵr, which are referred to as the
absolute and relative errors, respectively, the process is terminated as soon as

max
ij
|∆(g ◦ T)(xij)| ≤ max {ϵa, ϵr(gmax − gmin)} (6.5)

where gmin and gmax are the minimum and maximum observed values of g,
respectively. The left-hand side of Equation 6.5 corresponds to the largest sur-
pluswhose level index has not been refined yet, that is, has not been considered
as ils at some step ls. The above criterion is an adequate technique for curtail-
ing the interpolation process, since it is based on the actual progress.

The adaptivity presented in this subsection is referred to as hybrid, since
it combines features of global and local adaptivity [55]. Local adaptivity oper-
ates on the level of individual nodes [76] and is discussed in Section 6.2. By
contrast, global adaptivity operates on the level of individual dimensions [64].

109

6. Analysis under Workload Uncertainty

The intuition behind global adaptivity is that, in general, the input variables
manifest themselves (impact g) differently, and the interpolation algorithm is
likely to benefit by prioritizing those variables that are the most influential.

So far, we have formalized an efficient algorithm for adaptive hierarchi-
cal interpolation in multiple dimensions. The main equation is Equation 6.2
where∆(g ◦ T)(xij), xij , and eij are the ones in Equation A.23, Section 6.7.1,
and Section 6.7.2, respectively; and the interpolation is undertaken according
to the rules in Section 6.7.3. Next, we discuss a few implementation details.

6.7.4 Implementation

The life cycle of interpolation has roughly two stages: construction and usage.
The construction stage invokes g at a set of collocation nodes and produces
certain artifacts. The usage stage estimates the values of g at a set of arbitrary
points bymanipulating these artifacts. In this subsection, we provide the pseu-
docode for the two stages in order to give a better sense of the technique.

Let us first make a general note. According to our experience, it is ben-
eficial to the clarity and ease of implementation to collapse the two sums in
Equation 6.2 into one. This requires storing a level index i = (ik) ∈ Nnz

0

and an order index j = (jk) ∈ Nnz
0 for each node. It is also advantageous

to encode each pair (ik, jk) as a single unsigned integer, which, in particular,
eliminates excessive memory usage. In multiple dimensions, this results in a
vector ι = (ιk) ∈ Nnz

0 , which we simply call an index. Our encoding is

ιk = ik ∨ (jk ≪ nbits)

where ∨ and≪ stand for the bitwise or and logical left shift, respectively, and
nbits is the number of bits reserved for storing level indices, which can be ad-
justed according to the maximum permitted depth of interpolation.

The pseudocode for the construction stage is given in Algorithm 6.1. The
input is a subroutine called Algorithm G that evaluates g ◦ T. The output is a
structure interpolant that contains the artifacts of the interpolation. These
artifacts are a set of tuples {(ιk,∆g(xιk))}, which is a comprehensive descrip-
tion of a hierarchical interpolant. The pseudocode works as follows.

Line 1: Each iteration of the loop corresponds to an interpolation step ls in
Equation 6.2. The progress is captured by a structure state. The strategy
object represents the adaptation strategy utilized, and it operates in accor-
dance with Section 6.7.3. The Continue? method of strategy checks if any
of the stopping conditions is satisfied, in which case the process is terminated.

Line 2: The Next method of strategy consumes the previous state and
returns the initial state of the ongoing interpolation step. In particular, it pop-
ulates the indices field of state with the indices of the step. The rest of
the loop’s body populates the rest of state’s fields so that strategy can ade-
quately execute its functionality at the beginning of the next iteration.

110

6.7. Surrogate Construction

Algorithm 6.1: Construction of an adaptive hierarchical interpolant

Input: Algorithm G // a subroutine evaluating g ◦ T
Output: interpolant
1: while strategy.Continue?(state) do
2: state← strategy.Next(state)
3: state.nodes← grid.Compute(state.indices)
4: state.values← Algorithm G(state.nodes)
5: state.estimates← Algorithm 6.2(interpolant, state.nodes)
6: state.surpluses← Subtract(state.values, state.estimates)
7: state.scores← strategy.Score(state.surpluses)
8: interpolant.Append(state.indices, state.surpluses)
9: end while
10: return interpolant

Line 3: The grid object represents the interpolation grid that is being uti-
lized, and its Computemethod calculates the collocation nodes {xιk} that cor-
respond to the given indices {ιk}; see Section 6.7.1.

Line 4: Algorithm G evaluates g ◦T at the collocation nodes. This is by far
the most time consuming operation of the algorithm, as g is generally expen-
sive to execute. This operation is also a prominent candidate for paralleliza-
tion, since the algorithm does not impose any particular evaluation order.

Line 5: Algorithm 6.2 is a subroutine that exercises the interpolant con-
structed so far at the collocation nodes and thereby approximates the values
obtained on line 4. This algorithm will be discussed separately later on.

Line 6: The Subtract subroutine computes the difference between the
actual and approximated values of g, which yields the hierarchical surpluses
{∆(g ◦ T)(xιk)} (see Equation A.23) of the current interpolation step.

Line 7: The Scoremethod of strategy calculates the scores of the collo-
cation nodes based on their surpluses as described in Section 6.7.3.

Line 8: The Append method of interpolant refines the interpolant by
extending it with the indices and surpluses of the completed iteration.

We now turn our attention to the usage stage of an interpolant. The pseu-
docode is given in Algorithm 6.2. This subroutine is also used in Algorithm 6.1
on line 5. Let us make a couple of observations regarding this subroutine.

Line 3: The inner loop corresponds to an unfolded version of Equation 6.2;
that is, there is no separation into the individual interpolation steps taken.

Line 4: The basis object represents the interpolation basis that is being
used, and its Compute method evaluates the basis functions {eιk} that corre-
spond to the given indices {ιk} at arbitrary points; see Section 6.7.2.

It is worth noting that the strategy, grid, and basis objects conform
to certain interfaces and can be easily swapped out. This makes the two algo-

111

6. Analysis under Workload Uncertainty

Algorithm 6.2: Evaluation of an adaptive hierarchical interpolant

Input: interpolant, points
Output: estimates // approximated values
1: for point in points do
2: estimate← 0
3: for (index, surplus) in interpolant do
4: weight← basis.Compute(index, point)
5: estimate← estimate+ surplus×weight
6: end for
7: estimates.Append(estimate)
8: end for
9: return estimates

rithms very general and reusable with different configurations. In particular,
the adaptation strategy can be fine-tuned for each particular problem.

To recapitulate, in this section, the approximation engine of our framework
for probabilistic analysis of electronic systems under workload variation has
been presented. It is consolidated in Algorithm 6.1 and Algorithm 6.2.

6.8 Post-Processing

At Stage 4 of the proposed framework (see Section 6.5), the constructed in-
terpolant Anz

ls
(g) of the quantity of interest g is processed according to the de-

signer’s requirements. The post-processing in this chapter is similar to that
described in Section 5.6.4. Namely, probabilistic analysis of g is carried out
solely on Anz

ls
(g), and g is never invoked again. Since Anz

ls
(g) is a lightweight

representation of g, this analysis has a negligible computational cost.
The distribution of g can be efficiently estimated via a sampling method

of choice. In this case, one draws independent samples from the distribution
of z and evaluates Anz

ls
(g) at those points in accordance with Algorithm 6.2.

Having collected a large enough set of samples, the distribution of g can be
computed by employing such techniques as kernel density estimation [46].
Probabilities of various events can be straightforwardly estimated as well.

In addition, the expectation and variance of g can be computed without
sampling. Using a carefully chosen transformation T (recall Section 6.6), g
can be reparameterized in terms of independent variables that are uniformly
distributed on [0, 1]nz ; this transformation will be discussed further in Sec-
tion 6.9.2. In this scenario, the density function of z equals unity. Therefore,
using Equation 6.2, we obtain the following analytical expression:

Eg ≈ EAnz

ls
(g) =

∫
[0,1]nz

Anz

ls
(g)(z)dz =

∑
i∈Inz

ls

∑
j∈∆Jnz

i

∆(g ◦ T)(xij)wij

112

6.9. Illustrative Application

where wij is the volume of a basis function as shown in Equation 6.3.
Regarding the variance, observe in Equation A.2 thatVar(g) can be assem-

bled from two components: the expectation of g, which we already have, and
the expectation of g2, which is missing. The solution is to let h = (g, g2) be
the quantity of interest instead of g. The expectations of both g and g2 then be-
come available analytically, and Var(g) can be computed using Equation A.2.
This approach can be generalized to probabilistic moments of higher orders.

The careful reader might have noted a problem with the calculation of
Var(g) presented above: h is a vector, but g has been depicted so far as hav-
ing a one-dimensional codomain. However, this has been done for clarity; our
framework does not have such a limitation, as explained in Remark 6.1.

Remark 6.1. The mathematics and pseudocode remain unchanged for vector-
valued quantities. The only difference is that, since hierarchical surpluses nat-
urally inherit the output dimensionality of g, the operations that involve them
should be adequately adjusted. If the outputs are on different scales or have
different accuracy requirements, one might consider having different ϵa and ϵr
in Equation 6.5 for different outputs. In that case, one also has to revisit Equa-
tion 6.4 and devise a more sensible strategy for scoring collocation nodes, such
as rescaling individual outputs and then calculating ∥ · ∥2 or ∥ · ∥∞.

To summarize, once an interpolant of g has been constructed, the distri-
bution of g is estimated using a sampling method that is applied to the inter-
polant. The proposed framework naturally extends to quantities withmultiple
outputs, and it provides analytical formulae for the expectation and variance.

Lastly, let us recall that the evaluation of the quantity of interest is an ex-
pensive operation. The proposed technique is designed to keep this expense as
low as possible by choosing evaluation points adaptively, which is unlike tradi-
tional sampling methods. Moreover, in contrast to pc expansions and similar
techniques, our framework is well suited for nonsmooth response surfaces.

6.9 Illustrative Application

The agenda for this section is as follows. First, we exemplify Stage 1 of our
framework by introducing a number of quantities of interest g, which illustrate
the broad applicability of the framework and thereby give the reader a better
sense of its utility. Second, we turn to Stage 2 and highlight a transformation
T that is the appropriate one to use in the majority of cases. Third, we proceed
directly to Stage 4 and illustrate a potential output of the framework.

6.9.1 Problem Formulation

Assume the system, power, and temperature models described in Section 2.1,
Section 2.2, Section 2.3, respectively. Assume also the application model uti-
lized in Section 3.6.2 except for the requirement about being periodic.

113

6. Analysis under Workload Uncertainty

Let us first touch upon the timing aspects of the system in question. Each
of the nt tasks of the application has a start time and a finish time, which are
denoted by bi and di, respectively. Let also b = (bi)

nt
i=1 and d = (di)

nt
i=1. Other

timing characteristics can then be derived from b and d. For example, the end-
to-end delay of the application, which is the difference between the finish time
of the latest task and the start time of the earliest task, is as follows:

End-to-end delay =
nt

max
i=1

di −
nt

min
i=1

bi. (6.6)

Suppose now that the execution times of the tasks depend on the uncertain
parametersu introduced in Section 6.3. Then b andddependonu. Hence, the
end-to-end delay given in Equation 6.6 does too, and it constitutes a quantity
g that the designer might be interested in analyzing. Note that, since the min

and max functions are nondifferentiable, the same is true for g. Therefore,
g is nonsmooth, which renders the pc decomposition and similar techniques
inappropriate in this case in general, which is discussed in Section 6.2.

Remark 6.2. The behavior of g with respect to continuity, differentiability,
and smoothness cannot generally be inferred from the behavior ofu. Evenwhen
the parameters behave perfectly, g might still exhibit nondifferentiability or
even discontinuity, which depends on how g functions internally. For example,
as shown in [105], even if the execution times of tasks are continuous, end-to-
end delays are very often discontinuous due to the actual scheduling policy.

Let us move on to power. The total energy consumed by the np processing
elements during an application run can be estimated using a power profile P,
which is defined in Equation 2.1, as follows:

Total energy =
np∑
i=1

∫
pi(t)dt ≈ ∆t ∥P∥1 (6.7)

where pi denotes the power consumption of processing element i, ∆t is the
sampling interval, and ∥ · ∥1 stands for the Manhattan norm. Since b and d

depend on u, the power consumption of the system is also dependent on u.
Consequently, the total energy given in Equation 6.7 depends on u and is a
candidate for g. Remark 6.2 applies in this context to the full extent.

Let us now turn to temperature. The maximum temperature that the plat-
form reaches during an application run can be estimated using a temperature
profileQ, which is defined in Equation 2.2, as follows:

Maximum temperature =
np

max
i=1

sup
t
qi(t) ≈ ∥Q∥∞ (6.8)

where qi denotes the heat dissipation of processing element i, and ∥·∥∞ stands
for the uniformnorm. Since the power consumption of the platform is affected
by u, the corresponding heat dissipation is influenced by u as well. Therefore,

114

6.9. Illustrative Application

PE1

PE2

T1

T2 T3

T4

Simulation Construction Evaluation SamplingTransformation

End-to-end delay

Interpolant

Figure 6.4: Proposed solution applied to the end-to-end delay of an applica-
tion in which two out of four tasks have uncertain execution times

themaximum temperature in Equation 6.8 is also a potential quantity of inter-
est g. Note that, due to themaximization involved in the calculations, the quan-
tity is nondifferentiable and hence cannot generally be adequately addressed
using polynomial approximations; recall also the concern in Remark 6.2.

To summarize, we have covered three aspects of electronic systems, namely
timing, power, and temperature, and introduced a number of quantities that
the designer is typically interested in analyzing. These quantities will be dis-
cussed further in the section on experimental results, Section 6.10.

Let us employ one of the introduced quantities in order to have a concrete
example to work with in this section. The problem being addressed is depicted
on the left-hand side of Figure 6.4. We consider a heterogeneous platformwith
two processing elements denoted by PE1 and PE2 and an applicationwith four
tasks denoted by T1–T4; the setup will be described in detail in Section 6.10.
The data dependencies between the tasks and their mapping onto the process-
ing elements can be seen in Figure 6.4. The quantity of interest g is the appli-
cation’s end-to-end delay defined in Equation 6.6. The uncertain parameters
u are the execution times of T2 and T4 denoted by u1 and u2, respectively.

The large rectangle on the left-hand side of Figure 6.4 is a “black box” that
evaluates g given u. It takes an assignment of the execution times u1 and u2
and outputs the calculated end-to-end delay g. In practice, this evaluation
often involves a system simulator, such as Sniper [10], in which case the mod-
eling capabilities of this simulator are naturally inherited by our technique.

Targeting the practical scenario described in Section 5.6.1, the marginal
distributions and correlationmatrix ofu are assumed to be available. Without
loss of generality, eachmarginal distribution is a four-parameter beta distribu-
tion shown inEquation 5.12. Furthermore, the execution times are assumed to
be correlated based on the dependencies between the corresponding tasks as
defined by the structure of the application’s task graph. Specifically, the closer
task i and task j are in the graph as measured by the number of edges between
vertex i and vertex j, the more strongly ui and uj are correlated.

115

6. Analysis under Workload Uncertainty

6.9.2 Probability Transformation

At Stage 2 of our workflow outlined in Section 6.5, a suitable transformation
T, which is required in Equation 6.1, is chosen. We utilize the one shown in
Equation A.8 and reduce u : Ω → Rnu to z : Ω → [0, 1]nz so that the latter is
uniformly distributed. In this case, the rightmost T1 in Equation A.8 is simpli-
fied, since the marginals of z are already uniform. Note that the model-order-
reduction functionality of the chosen T is engaged; it eliminates redundant
stochastic dimensions and, therefore, assists the subsequent interpolation.

The result is that the obtained vector z conforms to the requirements listed
in Section 6.6: the codomain of z is [0, 1]nz , and it has the smallest number of
dimensions that are necessary in order to preserve a certain level of accuracy.

In Figure 6.4, T is depicted as a small square. In this particular example,
the stochastic dimensionality is found to be the same before and afterT, which
is indicated by the two incoming and two outgoing arrows. The depicted com-
ponent takes an assignment of the auxiliary variables z1 and z2 and outputs
the execution times u1 and u2 in accordance with their joint distribution.

In the following, we proceed directly to Stage 4, since Stage 3, which is
given in the middle of Figure 6.4, is standard: using a number of strategic
invocations of the simulator of g (the “black box”), it delivers a lightweight
surrogate Anz

ls
(g), which is illustrated by a rounded rectangle in Figure 6.4.

6.9.3 Post-Processing

Having constructed the interpolant Anz

ls
(g), the designer starts to work solely

with this interpolant, which corresponds to Stage 4 of our framework.
Suppose the designer is interested in the probability distribution of g. In

this scenario,Anz

ls
(g) should be sampled, which is represented by the rightmost

box in Figure 6.4. The operation corresponds roughly to Algorithm 6.2: the
interpolant receives z1 and z2 and returns an approximation of the value of g
at that point. Recall that the computational cost of this sampling is negligi-
ble, since g is not involved. The collected samples, which are denoted by G in
Figure 6.4, are then utilized in order to estimate the distribution of g.

Figure 6.5 depicts the result. The blue line shows the pdf of g computed
by applying kernel density estimation [46] to the data set G. The orange line,
which is barely visible behind the blue line, shows the actual density of g; its
calculation is explained in Section 6.10. It can be seen that our solution closely
matches the exact one. In addition, the green line illustrates the estimate that
the designer would obtain if g was sampled directly using the same number
of evaluations as the one consumed by the proposed framework. It can be
seen that, given the same budget, the solution delivered by our technique is
substantially closer to the exact one than the one delivered by direct sampling.

116

6.10. Experimental Results

100

300

500
Proposed solution
Exact solution
Direct sampling

P
ro

ba
bi

lit
y

de
ns

it
y

End-to-end delay (ms)
54 58 6250 52 56 60

Figure 6.5: Example of probability density functions computed using the pro-
posed solution and direct sampling

6.10 Experimental Results

In this section, we assess the proposed framework. All the experiments are con-
ducted on a gnu/Linuxmachine equipped with 16 Intel Xeon E5520 2.27 ghz
processors and 24 gb of ram. All the source code, configuration files, and in-
put data used in the experiments are available online at [20].

We consider three platform sizes np, two application sizes nt, and three
quantities of interest g. Specifically, np is 2, 4, or 8; nt is 10 or 20; and g
is the end-to-end delay, total energy consumption, or maximum temperature.
The three quantities of interest are defined in Equation 6.6, Equation 6.7, and
Equation 6.8, respectively. Therefore, we address 18 problems in total, which
correspond to different combinations of np, nt, and g. At this point, it might
be helpful to recall the illustrative application depicted in Figure 6.4.

Each problem is configured as follows. A platform with np processing
elements and an application with nt tasks are randomly generated by tgff
[34]. The tool generates a table for each processing element that specifies cer-
tain properties of the tasks when they are mapped to that processing element.
Namely, each table assigns two numbers to each task: a reference execution
time and a power consumption value, which are chosen uniformly between 10
and 50ms and between 5 and 25W, respectively. The application is scheduled
using a list scheduler [1]. Themapping of the application is fixed and obtained
by scheduling the tasks based on their reference execution times and assigning
them to the earliest available processing elements (a shared ready list).

Similarly to the previous chapters, the construction of thermal rc circuits,
which are required for temperature analysis, is delegated to HotSpot [100].
The floorplan of each platform is a regular grid where each processing element
occupies 4mm2. Themodeling of the static component of power consumption
is based on a linear fit to a set of spice simulations of a series of cmos invertors.
The sampling interval∆t of power and temperature profiles is 1 ms.

117

6. Analysis under Workload Uncertainty

The uncertain parameters u are the execution times of the tasks, and their
marginal distributions and correlationmatrix are as described in Section 6.9.1;
all other parameters are deterministic. Regarding the marginal distributions,
which are beta distributions as shown in Equation 5.12, the left c and right d
endpoints of their supports are set to 80% and 120%, respectively, of the refer-
ence execution times generated by tgff as described earlier. The parameters
a and b are set to two and five, respectively, for all tasks, which skews the dis-
tributions toward the left endpoints. The model-order-reduction parameter η
in Equation A.7 is set to 0.9, which results in nz = 2 and nz = 3 independent
variables for applications with nt = 10 and nt = 20 tasks, respectively.

The configuration of the interpolation algorithm—including the colloca-
tionnodes, basis functions, and adaptation strategywith stopping conditions—
closely follows the description given in Section 6.7. The parameters ϵa, ϵr, and
ϵs are set to around 103, 102, and 104, respectively, depending on the problem.

The performance of our framework with respect to each problem is as-
sessed as follows. First, as in Chapter 5, the true probability distribution of
g is estimated by sampling g directly and extensively. Direct sampling means
that there is no intermediate representation ormodel order reduction involved.
Second, we construct an interpolant of g and estimate the distribution of g by
sampling this interpolant, which is discussed in Section 6.7 and Section 6.8. In
both cases, we draw 105 samples; recall, however, that, unlike the cost of direct
sampling, the cost of sampling the interpolant is negligible. Third, we perform
another round of direct sampling. This time, the number of samples taken is
equal to the number of times g is invoked during the interpolation process.

In each of the aforementioned three cases, sampling is performed in accor-
dance with a Sobol sequence, which is a low-discrepancy sequence featuring
better convergence properties than those of classical Monte Carlo (mc) sam-
pling [57]. As a result, we obtain three estimates of the probability distribu-
tion of the quantity of interest: reference (the one considered to be exact), pro-
posed (the one based on our interpolation), and direct (the one equal in terms
of the number of evaluations of g to the proposed solution). The last two are
compared with the first one. For computing the proximity between two dis-
tributions, we use the well-known Kolmogorov–Smirnov (ks) statistic [90],
which is the supremum over the distance (pointwise) between two empirical
distribution functions and is consequently a stringent error indicator.

6.10.1 Approximation Accuracy

The results are given in Figure 6.6, Figure 6.7, and Figure 6.8, which corre-
spond to the end-to-end delay, total energy, and maximum temperature, re-
spectively. Each figure contains six plots arranged in a three-by-two grid. The
three rows of the grid correspond to the three platform sizes, and the two
columns to the two application sizes. The horizontal axis of each plot shows
the number of evaluations of the quantity of interest g, and the vertical one

118

6.10. Experimental Results

10 20 30 400 20 40 60 80 1000

20 40 600 50 100 150 2000

20 40 60 800 50 100 150 200 2500
Number of evaluations Number of evaluations

10−3

10−2

10−1

100
E

rr
or

 (
ln

(k
s)

)
E

rr
or

 (
ln

(k
s)

)
E

rr
or

 (
ln

(k
s)

)

10−3

10−2

10−1

100

10−3

10−2

10−1

100

10−3

10−2

10−1

100

10−3

10−2

10−1

100

10−3

10−2

10−1

100

Figure 6.6: Accuracy of the proposed solution (blue) and direct sampling
(orange) in the case of the end-to-end delay

shows the ks statistic on a logarithmic scale. Each plot has two lines. The blue
line represents our technique. The circles on this line correspond to the steps
of the interpolation process shown in Equation 6.2. They illustrate how the
ks statistic computed with respect to the reference solution changes as the in-
terpolation process adds nodes to the interpolant until a stopping condition is
satisfied. Note that, in order to make the figure legible, only a subset of the ac-
tual steps is displayed. Synchronously with the blue line, that is, for the same
numbers of evaluations of g, the orange line shows the error of direct sampling,
which is also calculated with respect to the reference solution.

We begin by describing one particular problem chosen among those shown
in the three figures. Consider, for instance, the one labeledwith⋆ in Figure 6.7.
It can be seen that, at the very beginning, when the number of evaluations is
very small, both the proposed solution and direct sampling perform poorly.
The ks statistic indicates that there is a substantial mismatch between each
of these two solutions and the reference one. However, as the hierarchical

119

6. Analysis under Workload Uncertainty

20 40 60 80 1000 50 100 150 2000

50 100 1500 200 400 6000

200 400 600 800050 100 150 200 2500

10−3

10−2

10−1

100

E
rr

or
 (

ln
(k
s)

)
E

rr
or

 (
ln

(k
s)

)
E

rr
or

 (
ln

(k
s)

)

10−3

10−2

10−1

100

10−3

10−2

10−1

100

10−3

10−2

10−1

100

10−3

10−2

10−1

100

10−3

10−2

10−1

100

Number of evaluations Number of evaluations

Figure 6.7: Accuracy of the proposed solution (blue) and direct sampling
(orange) in the case of the total energy consumption

interpolant is being adaptively refined, our solution rapidly approaches the
reference one and, by the end of the interpolation process, leaves the solution
produced by direct sampling approximately an order of magnitude behind.

Studying Figure 6.6, Figure 6.7, and Figure 6.8, one can make a number
of observations. Our interpolation-based approach (the blue lines) to proba-
bilistic analysis outperforms direct sampling (the orange lines) in all the cases.
This means that, given a fixed budget of computation time, the probability dis-
tributions delivered by our framework are closer to the true ones than those
delivered by sampling g directly, despite the fact that the latter relies on Sobol
sequences, which are a sophisticated sampling strategy. Since sampling meth-
ods try to cover the probability space impartially, the figures are a salient illus-
tration of the difference between being adaptive and nonadaptive.

It can also be seen in the figures that, as the number of evaluations in-
creases, the solutions computed by our technique approach the true ones. The
error of the framework generally decreases more steeply than the error of di-

120

6.10. Experimental Results

20 40 600 50 100 1500

100 200 300 400020 40 60 80 1000

20 40 60 80 1000 100 200 3000

10−3

10−2

10−1

100
E

rr
or

 (
ln

(k
s)

)
E

rr
or

 (
ln

(k
s)

)
E

rr
or

 (
ln

(k
s)

)

10−3

10−2

10−1

100

10−3

10−2

10−1

100

10−3

10−2

10−1

100

10−3

10−2

10−1

100

10−3

10−2

10−1

100

Number of evaluations Number of evaluations

Figure 6.8: Accuracy of the proposed solution (blue) and direct sampling
(orange) in the case of the maximum temperature

rect sampling. The decrease, however, tends to plateau toward the end of the
interpolation process (terminated by a stopping condition). The observed be-
havior has two potential explanations. First, the algorithm is instructed to sat-
isfy certain accuracy requirements (given by ϵa, ϵr, and ϵs), and it reasonably
does not domore thanwhat is requested. Second, sincemodel order reduction
is performed in the case of interpolation, the quantity being interpolated is not
g strictly speaking; it is a low-dimensional representation of g, which already
implies some information loss. Consequently, there is a certain limit on the
accuracy that can be achieved, which depends on the amount of reduction.

The message of the above observations is that the designer of an electronic
system can benefit substantially in terms of accuracy per computation time
by switching from direct sampling to the proposed technique. If the designer’s
currentworkhorse is classicalmc sampling, the switchmight lead to evenmore
dramatic savings than those shown in the figures. It is worth mentioning that

121

6. Analysis under Workload Uncertainty

the gain is especially prominent in situations where the analysis needs to be
performed many times, such as for the purpose of design-space exploration.

Remark6.3. Thewall-clock time taken by the experiments is not reported here,
as this time is irrelevant: since the evaluation of g is time consuming (see Sec-
tion 6.3), the number of these evaluations is the most apposite expense indi-
cator. For the curious reader, however, let us give an example by considering
the problem labeled with ♣ in Figure 6.8. Obtaining a reference solution with
105 samples in parallel on 16 cores takes around two hours. Constructing an
interpolant with 383 collocation nodes takes around 30 seconds (this is also
the time of direct sampling with 383 samples). Sampling the interpolant 105

times takes less than a second. The relative computation cost of sampling an in-
terpolant readily diminishes as the complexity of g increases; contrast it with
direct sampling, whose cost grows proportionally to the evaluation time of g.

6.10.2 Real-Life Deployment

Last but not least, we investigate the viability of deploying the proposed frame-
work in a real environment. This means that we should couple the framework
with a battle-proven simulator, used in both academia and industry, and let
this simulator evaluate a real application running on a real platform.

The scenario that we consider is similar to the one depicted in Figure 6.4.
The difference is that an industry-standard simulator is put in place of the
“black box” on the left-hand side of the figure, and that the quantity of interest
g is now the total energy. Unlike the synthetic examples discussed earlier, there
is no true solution against which to compare due to the prohibitive expense of
running the simulator, which is exactly why our framework is needed.

The chosen simulator is the well-known and widely used combination of
Sniper [10] and mcpat [72]. The architecture that we simulate is Intel’s
Nehalem-based Gainestown series. Sniper is distributed with a configuration
for this architecture, and we utilize this configuration without any changes.
The simulated platform is set up to have three cpus sharing one L3 cache. Re-
garding the application chosen for this example, it is vips, which is a piece of
image-processing software taken from the parsec benchmark suite [8]. In
this scenario, vips applies a fixed set of operations to a given image. The width
and height of the image to process are considered as the uncertain parameters
u, and they are assumed to be uniformly distributed within certain ranges.

The deployment of the real-life example has fulfilled our expectations. The
interpolation process has successfully finished and delivered an interpolant af-
ter 78 invocations of the simulator. Each such invocation takes 40 minutes on
average. The probability distribution of the total energy consumption has been
estimated by sampling the constructed surrogate 105 times. This number of
sampleswould take around sixmonths to obtain on ourmachine if we sampled

122

6.11. Conclusion

the simulator directly in parallel on 16 cores; using the technique presented in
this chapter, the whole procedure has taken approximately nine hours.

6.11 Conclusion

In this chapter, we have developed a framework for system-level analysis of
electronic systems whose runtime behaviors depend on uncertain parameters.
The proposed approach thrives on hierarchical interpolation guided by an ad-
vanced adaptation strategy, which makes our framework general and suitable
for studying various quantities that are of interest to the designer. Examples in-
clude the end-to-end delay, total energy consumption, and maximum temper-
ature of the system. The hybrid adaptivity featured by the framework makes
it particularly well suited for problems with idiosyncratic behaviors and steep
response surfaces, which often arise in electronic systems due to their nature.

When provided with a means of evaluating the quantity of interest for a
given outcome of the uncertain parameters and a description of the probability
distribution of these parameters, the proposed framework prescribes the steps
that need to be taken in order to analyze the quantity from a probabilistic per-
spective in a manner that is computationally efficient. Concretely, it delivers a
lightweight representation that allows for a straightforward calculation of the
probability distribution and other characteristics of the quantity of interest.

The performance of our technique has been evaluated by addressing a num-
ber of problems that often appear in electronic-system design. The results pro-
duced by our approach have been compared with the ones produced by an ad-
vanced sampling technique with a large number of samples. The comparison
has shown that, for a fixed budget of evaluations of the quantity of interest, the
framework achieves higher accuracy compared to direct sampling. Our tech-
nique has also been applied to a real-life problem, which has confirmed that
the deployment of the framework in a real-life context is straightforward.

Finally, note that, even though the proposed framework has been exempli-
fied by considering random execution times and three specific quantities of
interest, it is general and can be applied in many other settings. Additionally,
the approach to reliability analysis presented in Section 5.11 can benefit from
the development given in this chapter by constructing surrogate representa-
tions via adaptive hierarchical interpolation instead of the pc decomposition,
thereby making it possible to work with nonsmooth response surfaces.

123

7
Management under Workload
Uncertainty

So far, we have been chiefly concerned with making uncertainty-aware deci-
sions during various stages in the development of an electronic system, which
is themain topic of the thesis. In this penultimate chapter, we go on to perform
an investigation of how uncertainty can be mitigated at runtime. Specifically,
we consider resource management under workload uncertainty.

7.1 Introduction

Resource management is of great importance, since it is the activity that, if
done well, allows one to exploit the full potential of the computer system un-
der consideration. However, in many cases, there is very little control over
the operating environment. In particular, the actual runtime workload of a
general-purpose system is rarely, if ever, known in advance. In such cases, re-
source management inevitably has to contend with workload uncertainty.

Workload uncertainty can be mitigated at runtime by predicting the fu-
ture and acting accordingly. This is the general principle that proactive re-
source managers thrive on. However, accurate and useful prediction is not
straightforward: modern computer systems are reasonably complex, and their
resource management reasonably requires elaborate forecasting mechanisms.

Prediction traditionally falls within the scope of machine learning [46].
The field has recently received a great deal of attention due to the renaissance
in neural networks [45]. This family of techniques constitutes a highly promis-
ing assistant for resource management; however, although resource manage-
ment has already seen a number of applications of neural networks (to be dis-
cussed in Section 7.3), the research in this area is limited. In particular, only
primitive architectures of these networks have been considered, and they have
been applied to relatively simple problems. This state of affairs is unfortunate

125

7. Management under Workload Uncertainty

Time step

cp
u

cp
u

cp
u

Past
Future
Prediction

1 2 3 4 5 6 7 8

Figure 7.1: Example of predicting the cpu usage of a particular task up to four
steps ahead at three different moments in time

given that neural networks have been all but revolutionary in other disciplines.
Therefore, we feel strongly that more research should be conducted in order to
investigate the potential aid that the recent advancements inmachine learning
could provide to the design of resource managers for computer systems.

In this chapter, we conduct one such body of research. More specifically, we
study the usage of resources in a large system of computers and aim to predict
this usagemultiple steps ahead at the level of individual tasks that are executed
by the machines. To this end, we use recurrent neural networks [45].

In order to give a better sense of the scenario being considered, Figure 7.1
illustrates how the aforementioned prediction is supposed to work in practice.
In this example, the cpu usage of a single task running on a single machine is
depicted three times; see the solid lines. The three cases correspond to three
different moments in time as viewed by the resource manager of the system;
see the black circles. The solid orange lines represent the history of the usage,
which is known to the manager, while the solid blue lines represent the future
usage, which is unknown to the manager. Our objective is then to predict this
future usage for each task several steps ahead. In Figure 7.1, our potential
predictions up to four steps ahead are depicted as a set of dashed blue lines.

Information about future resource usage with the level of detail (individual
tasks) and foresight (multiple steps ahead) that Figure 7.1 depicts could be
of great help to the resource manager of the system under consideration. In
particular, the manager can more intelligently decide which machine the next
incoming task should be delegated to provided that it is able to foresee how
the currently active tasks will utilize the system’s resources in the future.

126

7.2. Problem Formulation

7.2 Problem Formulation

Consider a system of computers that is serving a stream of tasks that are dis-
tributed across the individual machines of the system by a resource manager.
The tasks consume certain resources, such as cpu and memory, during their
execution. Let task i be characterized by a resource-usage profile defined as
a sequence of ng-dimensional measurements taken with a certain sampling
interval and captured by the following ng × ns,i matrix:

Gi = (gij)
ns,i

j=1 (7.1)

where gij ∈ Rng is the measurement taken at time step j, and ns,i denotes the
length of the sequence. Such information is called fine grained, as it contains
multiple measurements over the execution of the task as opposed to having
only one aggregate measurement, such as the average or maximum value.

Suppose now that the current time step with respect to task i is j; an il-
lustration for j ∈ {3, 4, 5} is given in Figure 7.1. This means that gi1, . . . , gij

are known. Given these previous values, the objective is to estimate the next
h values of the sequence, which we denote by ĝi,j+1, . . . , ĝi,j+h; in Figure 7.1,
h = 4. Such prediction is called long range, since it provides multiple future
values as opposed to providing only one. The operation should be performed
with respect to each active task of interest at each moment of interest.

In order to tackle this problem, one is supposed to learn from historical
data, that is, from a data set of past profiles. Denote this data set by

G = {Gi : i = 1, . . . , nω} (7.2)

where nω is the total number of profiles, and Gi is as in Equation 7.1. Such
data can be straightforwardly collected provided that the system at hand has
an adequate monitoring facility deployed, which is commonplace in practice.

It should be understood that, in order for learning to be possible, the avail-
able resource-usage profiles have to have a certain structure that could be ex-
tracted and utilized for meaningful prediction. Therefore, an important ques-
tion in this regard is whether real-life profiles of this kind exhibit such a struc-
ture at all. Investigating this question is part of our objective in this chapter.

7.3 PreviousWork

Let us discuss a number of studies that leverage machine-learning techniques
in order to facilitate resource management in computer systems.

In [23], the subject of forecasting is temperature, and the objective is at-
tained by means of an autoregressive–moving-average model [46], resulting
in an efficient thermal management strategy for multiprocessor systems. The
work in [67] enhances runtime thermal management by providing an on-chip

127

7. Management under Workload Uncertainty

temperature predictor based on feedforward neural networks [46]. The anal-
ysis and mitigation of the impact of process variation undertaken in [60] are
facilitated by a linear regression model [46] constructed based on measure-
ments of static power with the goal of predicting peak temperatures.

The work in [25], which is more directly relevant to the topic of this chap-
ter, is concernedwith cloud data centers. The authors propose a framework for
predicting the number of virtual-machine requests together with the required
amounts of cpu and memory. The framework makes use of k-means cluster-
ing [46] for identifying different types of requests, and then it utilizes Wiener
filters in order to estimate the aggregate workload with respect to each identi-
fied type. Similarly to [25], the work in [53] is focused on forecasting virtual-
machine requests in cloud data centers and relies on k-means clustering as
the first step. Unlike [25], the main workhorse in the case of the technique
in [53] is extreme learning machines, which are feedforward neural networks.
An ensemble model [46] is presented in [9] targeted at predicting cpu usage
in cloud environments. It relies on multiple traditional models, and the final
prediction is obtained by combing these models via a scoring algorithm.

It can be seen that, in general, machine learning has been extensively uti-
lized in order to aid resource managers of computer systems. However, as
noted in Section 7.1, the most recent advancements have not yet been suffi-
ciently explored in this context. In particular, the utility of neural networks
has been studied only marginally: feedforward neural networks—which are
utilized, for instance, in [53, 67]—are arguably the simplest and least powerful
members of the family. However, the family is rich and potent. For instance,
recurrent neural networks accompanied by adequate training techniques [45]
are a salient candidate for resource management in computer systems.

In addition, note that the predictions delivered by the techniques proposed
in [9, 25, 53] are coarse. They treat virtual-machine requests or computational
resources as a fluid and predict the level that this fluid will attain at the next
moment in time. This means that they are not capable of characterizing in-
dividual tasks executed by the machines. More generally, resource-usage pre-
diction at the level of individual tasks, potentially multiple steps ahead, has
not received adequate attention. However, prediction of this type could pro-
vide the resource manager with more detailed and foresighted information,
thereby allowing for more intelligent orchestration of the system.

To summarize, only primitive architectures of neural networks have been
investigated in the literature on resource management of computer systems,
and only aggregate prediction has been considered so far. Therefore, there is
a palpable need for further exploration and development in this direction.

128

7.4. Proposed Solution

Grouping Indexing Selection

Training Validation Testing

Raw data

Trained
predictive
model

Predictive
model

Figure 7.2: Overview of the proposed solution, including the data pipeline
(top) and the learning pipeline (bottom)

7.4 Proposed Solution

Our workflow for resource-usage prediction is illustrated in Figure 7.2. First,
we note that the available data generally need to be processed prior to learning,
since they are likely to be given in a format that is not efficient or convenient
to the subsequent calculations. With this in mind, our foremost task is to ex-
tract G defined in Equation 7.2 from the given raw data. This processing step
can be seen at the top of Figure 7.2 and is explained in Section 7.4.1. Next, the
resulting profiles are utilized in order to obtain an adequately trained predic-
tive model. The modeling part is covered in Section 7.4.2 while the learning
part is explained in Section 7.4.3; the latter can also be seen at the bottom of
Figure 7.2. These operations are to be performed offline, whereas the trained
model is supposed to be used by the resource manager at runtime in order to
make predictions and subsequently take account of workload uncertainty.

7.4.1 Data Pipeline

In this subsection, we describe our pipeline for working with large data sets,
which makes the data readily accessible for machine-learning applications. In
order to make the exposition clearer, the pipeline is described by applying it
to a real-life data set of resource-usage traces collected in a large computer
cluster. To this end, we begin with a brief introduction to this data set.

The data set that weworkwith is the Google cluster-usage traces [94]. The
traces were collected over 29 days in May 2011 and encompass more than 12
thousand machines serving requests from more than 900 users. In the data
set’s parlance, a user request is a job, a job comprises one or several tasks, and
a task is a Linux program to be run on a single machine. Each job is assigned a
unique id, and each task of a job is given an id that is unique within the scope
of the job. Apart from other tables, the data set contains a table that records
the resource usage of individual tasks with a granularity of five minutes. Each
record corresponds to a specific task and a specific five-minute interval, and
it provides measurements such as the average and maximum values of cpu,

129

7. Management under Workload Uncertainty

memory, and disk usage. There aremore than a billion records in the resource-
usage table, which correspond to more than 670 thousand jobs andmore than
24 million tasks with associated resource-usage profiles.

The resource-usage table is provided in the form of 500 archives. Each
archive contains a single file with measurements over a certain time window.
This format is inconvenient and inefficient to work with, which is addressed
as described below and shown by the three topmost boxes in Figure 7.2.

In the first step (the leftmost orange box in Figure 7.2), the data from the
500 archives are distributed into separate databases so that each database con-
tains all the data points of a particular job, resulting in as many databases as
there are jobs. In order to reduce disk-space requirements, only the columns
of the table that are actually used are preserved. In our experiments, these
columns are the start time stamp, job id, task id, and average cpu usage.

In the second step (the middle orange box in Figure 7.2), an index of the
profiles is created in order to be able to efficiently navigate the catalog of the
databases created in the previous step. Each record in the index containsmeta-
data about a single task, the most important of which are the task id and the
path to the corresponding database. We also include the length of the profile
in the index in order to be able to efficiently filter the profiles by length.

In the last step (the rightmost orange box in Figure 7.2), a subset of the
resource-usage profiles is selected using the index according to the needs of a
particular learning session (to be discussed in Section 7.5) and then stored on
disk. Concretely, the profiles are fetched from the databases and stored in the
native format of the machine-learning library being utilized; we refer to a file
in such a format as a binary file. Instead of writing all the selected profiles into
one binary file, we distribute them across several files. Such a catalog of binary
files is created for each of the three parts of the commonly used partition of the
available data [46]: one is for training, one for validation (model selection or
development), and one for testing. In the following, these three parts ofG are
denoted by Gtrain, Gvalid, and Gtest, respectively; see also Figure 7.2.

Lastly, it is common practice to standardize data before feeding them into
a learning algorithm [46]. In our case, this is done along with creating the
aforementioned catalogs, which requires a separate pass over the training set.

In conclusion, the benefit of the data pipeline described above is in the
streamlined access to the data during one or more learning sessions. The bi-
nary files can be read efficiently as many times as needed, and they can be
readily regenerated whenever the selection criteria change. It is worth noting
that the artifacts of the procedures performed in the grouping and indexing
steps stay the same. Additionally, the presence of multiple binary files allows
for shuffling the training data at the beginning of each training epoch.

130

7.4. Proposed Solution

Recurrent layersInput Feedforward layer Output

…

Figure 7.3: Schematic representation of the predictive model

7.4.2 Predictive Model

As emphasized in Section 7.1 and Section 7.2, our objective is to assess the ap-
plicability of the latest advancements in neural networks [45] to fine-grained
long-range prediction of resource usage in computer systems. The architec-
tures of neural networks are very diverse. However, since the data that we
study are inherently sequential, it is natural to found our predictive model on
the basis of recurrent neural networks [45], which are designed for such cases.

A schematic representation of our model can be seen in Figure 7.3. Note
that many of the actual connections between the parts of the model are simpli-
fied or not shown at all in order to make the figure legible. In the rest of this
subsection, we describe each of the parts. A number of important operational
aspects of the model will be covered in the next subsection, Section 7.4.3.

The input to the predictive model is a single ng-dimensional data point,
which can be seen on the left-hand side of Figure 7.3. Similarly, the output is a
single ng-dimensional data point, which is depicted on the right-hand side of
Figure 7.3. The input gij is the value of the resource usage of a single task at
time step j, and the output ĝi,j+1 is a one-step-ahead prediction of this usage.

The core of the model is formed by a number of recurrent layers. In Fig-
ure 7.3, these layers are represented by a group of blue boxes. The network can
bemade asmany layers deep as needed. Each layer is composed of a number of
units, which are depicted as double circles in Figure 7.3. The number of layers
and the number of units per layer are denoted by nl and nu, respectively.

Units are the smallest processing elements. The key characteristics of a
unit of a recurrent layer are that the unit has internal memory, and that it has
access to its previous output. There are different types of recurrent units, defin-
ing how these units let data flow through them and update their memory. One
notable unit is the long short-termmemory (lstm) unit [49], which has been
designed to overcome the problems of traditional recurrent neural networks,
such as the vanishing gradient during training. The recurrent layers of our
predictive model are lstm layers, that is, layers composed of lstm units.

131

7. Management under Workload Uncertainty

Each recurrent layer is enhanced by a dropout mechanism [122], which is
active only during training. This mechanism gives control over the regulariza-
tion of themodel and ismeant to prevent potential overfitting [46]. For future
reference, denote the probability of dropping an output of a layer by ρdrop.

The output of the last recurrent layer is typically a large tensor, which is
proportional in size to the number of units in the layer. Each entry of such a
tensor can be regarded as a feature that the network has extracted and acti-
vated in accordance with the resource-usage profile that is currently being fed
to the model. The task now is to combine these features in order to produce
a single prediction. To this end, we mount a feedforward layer with a linear
activation function on top of the last recurrent layer, which is depicted as an
orange box in Figure 7.3. Unlike the recurrent layers, which feature highly
nonlinear transformations, this layer performs an affine transformation.

To summarize, we have described a predictive model that is composed of a
number of recurrent layers and a feedforward layer. Due to its internal mem-
ory, the model is capable of efficiently taking account of the entire past of the
resource-usage profile in question when predicting the future of this profile.
Let us now discuss how the predictive model is meant to be used.

7.4.3 Learning Pipeline

Recall that the output of the data pipeline described in Section 7.4.1 is the
resource-usage data set G, which is split into three parts: Gtrain, Gvalid, and
Gtest. The three parts are utilized during the following three steps of what we
refer to as the learning pipeline: training, validation, and testing. This learn-
ing pipeline is discussed below and illustrated at the bottom of Figure 7.2.

We begin with training. The model depicted in Figure 7.3 has a large num-
ber of parameters that have to be learned; they are primarily various weights
and biases inside the layers. For this purpose, Gtrain is utilized. The training
is undertaken via backpropagation through time using stochastic gradient de-
scent [45] with the objective of minimizing a certain loss function, which we
shall specify shortly. There are two aspects that need to be discussed first.

The first concerns the way a single profile is fed to the predictive model.
To begin with, the internal memory of the model is nullified. Next, recall that
each profile contains several data points (see Equation 7.1), and note that two
profiles generally have different lengths (ns,i ̸= ns,j), since the execution times
of two tasks are likely to differ. With this in mind, each profile is fed to the
model using a technique called dynamic unrolling. An illustration is depicted
in Figure 7.4, in which the schematic representation given in Figure 7.3 has
been simplified even further and rotated 90◦ counterclockwise. It can be seen
that the model has been replicated as many times as there are data points in
the profile. However, it is still the same model, and all the replicas share the
same parameters and the same internal memory. It can also be observed in

132

7.4. Proposed Solution

Output

Input

Feedforward layer

Recurrent layers …

Figure 7.4: Feeding a resource-usage profile into the predictive model

Figure 7.4 how information flows from one time step to the next one, which
implicitly gives the model access to the whole history at each time step.

Now, it is not efficient to feed only one resource-usage profile at a time
due to the inevitable overhead imposed by the computations involved. These
computations should be performed in batches; that is, nb profiles should be
fed simultaneously where nb is referred to as the batch size. Since, in general,
ns,i ̸= ns,j , it is not possible to stack multiple arbitrary profiles into a single
tensor. In order to circumvent this problem, we resort to bucketing. Specifi-
cally, each profile is put into one of many buckets that is chosen based on the
profile’s length. When a bucket collecting profiles of length from some ns,l to
ns,r has received nb profiles, it pads the ones that are shorter than ns,r with
zeros and emits a tensor of size nb × ns,r × ng to be consumed by the model.

The loss function that is minimized during training is themean squared er-
ror (mse) of one-step predictions over the whole batch. The correct prediction
for the very last time step, which goes beyond the timewindowof the profiles in
question, is assumed to be zero. For instance, in Figure 7.4, there is no gi,ns,i+1

against which to compare ĝi,ns,i+1; thus, gi,ns,i+1 is assumed to be zero.
Let us now discuss validation, which corresponds to the middle blue box

in Figure 7.2. Similarly to other nontrivial models, the one presented in Sec-
tion 7.4.2 has a number of hyperparameters. Examples include the number of
recurrent layers nl, number of units per layer nu, and probability of dropout
ρdrop. Unlike ordinary parameters, which are optimized during training as de-
scribed earlier, hyperparameters are set prior to training and kept unchanged
thereafter. From the examples given, it is apparent that hyperparameters can
have a profound impact. Hence, they should be tuned with great care.

The validation set Gvalid is used to assess the performance of the model
after it has been trained (using Gtrain as usual) with different configurations
of the model’s hyperparameters. Similarly to training, the error metric is the

133

7. Management under Workload Uncertainty

mse, and it is beneficial to perform validation in batches. The trained model
that has the best performance on Gvalid is then chosen as the one to use.

Despite all the techniques employed to speed up training, it is still a time-
consuming operation. This means that a brute-force search in the space of the
hyperparameters for the best configuration is impractical; therefore, amore in-
telligent strategy should be followed. In our workflow, we use the Hyperband
algorithm [71]. Instead of adaptively choosing new configurations to evaluate,
which is the case with many algorithms of this kind, Hyperband adaptively al-
locates resources to configurations chosen at random, which is demonstrated
to be an efficient strategy. In particular, the algorithm allows for a reduction in
computation time by promptly eliminating overtly inadequate configurations
of the hyperparameters. In this context, resources refers to a user-definedmea-
sure of how extensively a configuration is to be exercised. For instance, it can
be the amount of wall-clock time spent or the number of training steps taken;
in our experiments documented in Section 7.5, we use the latter.

Let us now turn to testing; see the rightmost blue box in Figure 7.2. After
a trained model has been selected during the validation step, it has to be re-
assessed [46]: one cannot aver that the error with respect to Gvalid is a good
estimate of the generalization error due to selection bias—we have deliberately
chosen the configuration that has the best performance on Gvalid.

In order to attain an unbiased evaluation, the testing set Gtest is utilized.
Similarly to training and validation, the mse is considered as a measure of
quality, and bucketing is utilized. However, unlike with training and valida-
tion, the error is calculated in a more elaborate way as follows. Recall first
that our objective is making long-range predictions of resource usage; see Sec-
tion 7.2. Note also that, in training and validation, we are concernedwith what
happens only one step ahead. The reason for this is that we would like to have
the highest throughput possible during training and validation, since they are
performedmany times. Testing, on the other hand, is done only once, and it is
during testing that we make and assess multiple-step-ahead predictions.

In order to calculate long-range predictions, we use refeeding: at time
step j, the predicted value ĝi,j+1 of the resource usage of task i is fed to the
model as if it was the actual resource usage gi,j+1 at time step j + 1, which
is not yet known at time step j. At this point, it might be helpful to consider
the example in Figure 7.1. The process continues until all the desired h future
values have been estimated. It is natural to expect that a more accurate one-
step-ahead prediction will lead to a more accurate multiple-step-ahead one.

Consider nowhowa trained predictivemodelmight be used in practice. Po-
tentially, at each time step j, the next h values of the resource usage of task i,
that is, ĝi,j+1, . . . , ĝi,j+h, might have to be estimated. Therefore, in order to
test the model properly, we have to consider all the time steps of the profile in
question and make h predictions at each time step. One important aspect to
note is that the state of the model’s memory should be saved before comput-
ing ĝi,j+1, . . . , ĝi,j+h at time step j and then restored before feeding gi,j+1 in

134

7.5. Experimental Results

order to advance to time step j + 1. This is because the memory becomes con-
taminated when one feeds predictions instead of observations into the model.

At this point, the main aspects of our workflow, which is illustrated in Fig-
ure 7.2, have been discussed. The output of the workflow is a predictive model
that has been trained on Gtrain, validated on Gvalid, and tested on Gtest.

7.5 Experimental Results

In this section, we assess our workflow for making fine-grained long-range
predictions of resource usage in computer systems, which is described in Sec-
tion 7.4. All the experiments are conducted on a gnu/Linuxmachine equipped
with 8 Intel Core i7-3770 3.4 ghz processors, 24 gb of ram, and an hdd of
500 gb. All the source code, configuration files, and input data used in the
experiments are available online at [21]; see also [22].

7.5.1 Data Pipeline

Recall that we study the Google cluster-usage traces [94], which are intro-
duced in Section 7.4.1. Without loss of generality, we focus on the consumption
of one particular resource, namely cpu; thus, ng = 1 in Equation 7.1. In this
regard, the data set provides two apposite pieces of information: the average
and maximum cpu usage over five-minute intervals; we extract the former.

The grouping and indexing steps, which are described in Section 7.4.1 and
depicted in Figure 7.2, take around 57 hours (no parallelism). Since they have
to be performed only once, their computational cost can be considered negli-
gible. Regarding the selection step, we filter those resource-usage profiles that
contain 5–50 data points; hence, ns,i ∈ [5, 50] in Equation 7.1. Such profiles
constitute about 74% of the total number of profiles (about 18 out of 24 mil-
lion). We experiment with a random subset of two million profiles, which is
roughly 11% of the 5–50 resource-usage profiles; thus, nω = 2 × 106 in Equa-
tion 7.2. The data sets Gtrain, Gvalid, and Gtest constitute 70%, 10%, and 20%
of G, respectively. The process of fetching this number of profiles and storing
them on disk takes around four hours. Recall that this operation has to be
repeated only when the selection criteria change, which happens rarely.

7.5.2 Learning Pipeline

The training step (see the leftmost blue box in Figure 7.2) is configured as fol-
lows. Ten buckets are used according to the following partition:

5 < 6 < 7 < 8 < 9 < 10 < 15 < 20 < 30 < 40 ≤ 50.

For instance, the first and last buckets collect profiles with ns,i = 5 and ns,i ∈
[40, 50], respectively. The batch size nb is set to 64. The optimization algorithm

135

7. Management under Workload Uncertainty

employed for minimizing the loss function is Adam [63], which is an adaptive
technique. The algorithm is applied with its default settings.

Let us now discuss the validation step, which corresponds to the middle
blue box in Figure 7.2. The hyperparameters being considered are the number
of recurrent layers nl (the blue boxes in Figure 7.3), number of units per layer
nu (the double circles in Figure 7.3), and probability of dropout ρdrop; these
hyperparameters are introduced in Section 7.4.2. Specifically, we let nl be in
{1, 2, 3, 4, 5}, nu in {100, 200, 400, 800, 1600}, and ρdrop in {0, 0.25, 0.5}, which
yields 75 different combinations in total. The candidate solutions are explored
by means of the Hyperband algorithm with its default settings; this algorithm
is introduced in Section 7.4.3. The maximum budget granted to one configu-
ration is set to four training epochs, which correspond to 4 × 0.7 × 2 × 106 =

5.6× 106 resource-usage profiles or 5.6× 106 ÷ 64 = 87,500 training steps.
The aforementioned exploration, which encompasses both training and

validation, takes roughly 15 days to finish. During this process, we run up to
four learning sessions in parallel, which typically keeps all eight cores busy. It
should be noted that, since the training, validation, and testing data sets have
been cached on disk as a result of the data pipeline described in Section 7.4.1,
individual learning sessions do not have any overhead in this regard. It is also
worth noting that the machine utilized in these experiments has no modern
gpus; therefore, there is a great deal of room for performance improvement.

The results of the validation step are reported in Table 7.1. The table shows
themses of the top 10 and bottom 10 configurations of the hyperparameters as
measured usingGvalid (0.1×2×106 = 2×105 profiles). The total number of dis-
tinct cases sampled by Hyperband is 62. It can be seen that the error changes
rapidly at the bottom of the table and slows down toward the top. Relative to
the least accurate trained model (rank 62), the error drops by around 22% in
the bottom 10 and by around 3% in the top 10 configurations. The overall im-
provement in accuracy with respect to the bottommost configuration is about
36%, which indicates that the validation step is highly beneficial.

The best trained predictive model (rank 1) is found to have the following
hyperparameters: nl = 3, nu = 1600, and ρdrop = 0. In general, larger archi-
tectures tend to outperform smaller ones, which is expected. However, there
are complex configurations at the bottom of Table 7.1 as well, which could be
due to the dropout mechanism engaged in those cases. To elaborate, in these
experiments, the impact of dropouts is found to be mostly neutral or negative;
compare, for instance, the candidates of ranks 2 and 60. This could be due to
the amount of training data being sufficient for regularizing the model.

Table 7.1 also shows an estimate of the memory required by each configura-
tion, which includes the trainable parameters and internal state of the model.
It can be seen that, if memory usage is a concern, one could trade a small
decrease in accuracy for a considerable saving in memory. For example, the
fourth best solution requires around 85% less memory than the first one.

136

7.5. Experimental Results

Table 7.1: Accuracy and memory requirements of the top 10 and bottom 10
configurations of the hyperparameters of the predictive model

Rank nc nu ρdrop Error (mse) Memory (mb)

1 3 1600 0.00 0.3148 197.81
2 4 1600 0.00 0.3154 276.76
3 3 1600 0.25 0.3159 197.81
4 2 800 0.25 0.3194 30.14
5 5 200 0.00 0.3205 6.01
6 2 1600 0.50 0.3207 118.87
7 5 800 0.00 0.3251 89.97
8 3 800 0.00 0.3257 50.08
9 1 1600 0.25 0.3278 39.92
10 2 800 0.00 0.3316 30.14
53 1 200 0.00 0.3834 0.72
54 1 100 0.25 0.3851 0.21
55 3 100 0.50 0.3871 0.92
56 2 100 0.25 0.3888 0.56
57 5 400 0.25 0.3891 23.01
58 5 800 0.50 0.3918 89.97
59 4 100 0.50 0.3978 1.28
60 4 1600 0.50 0.4115 276.76
61 5 400 0.50 0.4385 23.01
62 5 100 0.25 0.4894 1.63

After the validation step, the best trained predictive model is taken to the
testing step; see Figure 7.2. The solution is assessed extensively by predicting
resource usage for individual tasks multiple steps ahead at each time step of
the profiles in Gtest (0.2 × 2 × 106 = 4 × 105 profiles). In these experiments,
we predict four time steps into the future; therefore, h = 4 in Section 7.2. This
elaborate and mostly sequential procedure takes approximately 18 hours.

In order to attain a better assessment of the accuracy of the chosen trained
model, we employ an alternative solution referred to as the reference solution.
This alternative solution is based on random walk. It postulates that the best
prediction of what will happen tomorrow is what happens today plus an op-
tional random offset, which we set to zero. In other words, the next value for
the resource usage of each analyzed task is estimated to be the current one,
which subsequently results in four identical predictions at each time step.

The results of the testing step can be seen in Figure 7.5, which shows the
mses of our solution (the blue line) and the reference one (the orange line)with
respect toGtest. The magnitude of the errors of our predictive model suggests
that the amount of regularity present in the data is not sufficient for making
highly accurate resource-usage predictions. Nevertheless, one can observe in

137

7. Management under Workload Uncertainty

Number of time steps

E
rr

or
 (
m
se

)

1 2 3 4

0.5

0.7

0.3

0.9

47%

Proposed solution
Reference solution

Figure 7.5: Accuracy of the proposed and reference solutions for predicting
resource usage for individual tasks multiple steps ahead

Figure 7.5 that, relative to the reference solution, the trained model provides
an error reduction of approximately 47% at each of the four time steps. This
observation indicates that some structure does exist, and that this structure
can be identified and utilized in order to make educated predictions.

7.6 Conclusion

In this chapter, we have elaborated on the possibility of mitigating workload
uncertainty at runtime and, more specifically, presented our experience of
working with state-of-the-art recurrent neural networks in the context of fine-
grained long-range prediction of resource usage in computer systems. Our
workflow—which starts by making the data readily available for learning and
finishes by making predictions with respect to individual tasks multiple time
steps into the future—has been described in detail and applied to a large data
set of real resource-usage profiles collected in a computer cluster.

The obtained results suggest that the fine-grained resource-usage profiles
that have been studied possess a certain structure, and that this structure can
be extracted by advanced machine-learning techniques and subsequently uti-
lized for making educated predictions. This detailed information could be of
great use to the resourcemanager of the computer systemunder consideration,
allowing the manager to more intelligently orchestrate the system.

138

8

Conclusion

Modern electronic systems are complex, operate in complex environments,
andperformcomplex tasks. Even in the deterministic case, analysis anddesign
of such systems are highly challenging endeavors. However, their difficulty is
escalated even further by uncertainty that accompanies electronic systems.

The objective of this thesis has been to assist the designer of electronic sys-
tems by providing tools that would allow for effective and efficient quantifi-
cation and mitigation of uncertainty that stems from the fabrication process,
workload, and aging. In this final chapter, we recapitulate the main outcomes
of the work that has been presented and outline directions for future work.

8.1 PresentWork

Wehave developed a number of uncertainty-aware system-level techniques for
analyzing and designing electronic systems. The features that are common to
our solutions are efficiency, generality, and straightforwardness of application.

In Chapter 3, we have elaborated on the deterministic scenario, which has
served as an adequate starting point for the developments in the subsequent
chapters. We have presented an auxiliary transformation of the temperature
model that simplifies certain operations associated with temperature calcula-
tions. Furthermore, we have proposed a novel approach to dynamic steady-
state power and temperature analysis. The high accuracy and speed of our
techniquemake it readily applicable inside intensive design-space-exploration
loops, which has been illustrated by performing a reliability optimization.

In Chapter 4, we have considered the variability that occurs in process pa-
rameters as a result of process variation across silicon wafers. In this context,
we have presented a versatile statistical framework for inferring the aforemen-
tioned variability by means of indirect measurements, which can potentially

139

8. Conclusion

be incomplete and corrupted by noise. The ability to work with such measure-
ments implies low costs, since it might obviate the need for deployment of any
specialized test structures, and in scenarios where such structures are already
available, it might require actuating only a small subset of them.

In Chapter 5, we have presented a methodology for studying diverse
system-level quantities that are of interest to the designer, but that are also
uncertain due to process variation. Examples of such quantities include tran-
sient and dynamic steady-state power and temperature profiles of the system
at hand as well as the system’s maximum temperature and total energy con-
sumption. Our approach treats the quantity being analyzed as an opaque ob-
ject, whichmakes it flexible and convenient to use, and delivers a surrogate for
this object that allows the designer to efficiently estimate various probabilistic
characteristics of this quantity. The efficiency makes the proposed technique
suitable for exploring the design space. This has been exemplified in the con-
text of energy optimization with reliability-related constraints, in which relia-
bility analysis has been enhanced to consider process uncertainty.

In Chapter 6, we have described another technique for probabilistic analy-
sis of system-level quantities that are of interest to the designer. In this case,
we have striven to provide an adequate characterization of the variability that
originates fromworkload. This variability tends to be less regular than the one
that stems from the fabrication process and, therefore, necessitates a differ-
ent treatment. Our approach allows the designer to analyze important quan-
tities that are subject to workload variation, such as end-to-end delays, energy
consumption, and peak temperatures. The experimental results have demon-
strated that, given a fixed budget of evaluations of the quantity under consid-
eration, the designer can benefit substantially in terms of accuracy per compu-
tation time by utilizing the proposed technique instead of direct sampling.

In Chapter 7, we have elaborated on mitigation of workload uncertainty
at runtime in the context of resource management. Specifically, we have per-
formed an early investigation into the applicability of advanced prediction
techniques from machine learning to the problem of fine-grained long-range
forecasting of resource usage in large computer systems. The results of this
investigation indicate that the real-life data that have been studied possess
certain regularities, and that these regularities can be modeled by advanced
techniques and subsequently utilized for making sensible predictions.

8.2 FutureWork

Aswithmany other bodies of research, the one presented in this thesis has a be-
ginning and an end. The latter rarely implies that the subject under considera-
tion has been exhaustively studied and requires no further attention. Instead,
it merely means that the research project has come to a certain conclusion and
made a certain contribution to the understanding or treatment of this subject.

140

8.2. Future Work

Naturally, this can leave a number of research questions open and is likely to
pose new questions, which is also the case with our work.

Before we discuss particulars, let us first make one general remark about
our research. It would be valuable to investigate how our uncertainty-aware
techniques perform in practice. Although we have conducted such an investi-
gation in the case of the interpolation-based technique presented in Chapter 6,
this study is relatively small and has been done in an academic setting. Indus-
trial settings are different, and they might help to reveal our blind spots.

In the experiments reported in Chapter 4, Chapter 5, and Chapter 6, we
assume certain probability distributions. Even though our assumptions are
reasonable, it would be helpful to assess our solutions using probability distri-
butions that are estimated based on real-life measurements. In particular, as
noted in the chapters, the assumed correlations affect not only the accuracy
but also the feasibility of applying our techniques. The concern about feasibil-
ity is particularly acute in situations where the curse of dimensionality is an
issue, and this curse could be an issue in Chapter 5 and Chapter 6. Recall that
the former leverages the polynomial chaos (pc) decomposition while the latter
makes use of adaptive hierarchical interpolation. Having identified a number
of problematic real-life use cases, one could investigate how the proposed tech-
niques should be configured or even extended in order to make them applica-
ble in those cases. For instance, the attentive reader might have noted that the
control over anisotropy that is provided by the framework based on pc expan-
sions has not been sufficiently explored in the experimental results. However,
if used properly, it could effectively mitigate the curse of dimensionality.

It would also be meaningful to perform an elaborate comparison and ex-
plore the boundaries between the techniques proposed in Chapter 5 and Chap-
ter 6. Our default policy is to use the former for process uncertainty and the
latter for workload uncertainty, which is motivated by the response surfaces
that are characteristic of the two types of uncertainty. However, this does not
mean that one of the techniques cannot be successfully used in the primary ap-
plication area of the other. For instance, workload uncertainty might lead to
smooth variations, in which case a polynomial surrogate might be beneficial.

The early investigation reported in Chapter 7 is arguably the most promi-
nent direction for further development within the scope of this thesis. Mitiga-
tion of uncertainty at runtime is considered advantageous, since one has access
to large amounts of relevant and previously inaccessible-by-definition infor-
mation and, therefore, can make more educated decisions. As emphasized in
Chapter 7, modern architectures of neural networks accompanied by modern
approaches to training have great potential, and resource management is an
important beneficiary in this regard. This potential, however, has yet to mate-
rialize. Extensive research in this direction would be highly desirable.

141

A
Appendix

In the appendix, we define a number of concepts and describe a number of
techniques that are utilized extensively throughout the thesis.

A.1 Linear Algebra

Any symmetric matrixX ∈ Rn×n admits the eigendecomposition [87]. In this
particular case, the decomposition takes the following form:

X = UΛUT (A.1)

whereU ∈ Rn×n is an orthogonal matrix of the eigenvectors ofX, and

Λ = diag (λ1, . . . , λn) =

 λ1 · · · 0

· · · · · · · · ·
0 · · · λn

 ∈ Rn×n

is a diagonal matrix of the eigenvalues of X. If, in addition, X is a positive
semidefinite matrix, the eigenvalues {λi}ni=1 are non-negative.

A.2 Probability Theory

Let (Ω,F ,P) be a (complete) probability space where Ω is a set of outcomes,
F ⊆ 2Ω is a σ-algebra on Ω, and P : F → [0, 1] is a probability measure
[35]. The σ-algebra represents a set of events, and the probability measure
assigns probabilities to these events. A real-valued random variable defined
on (Ω,F ,P) is an F-measurable function x : Ω → R. A random variable x is
uniquely characterized by its distribution function F , which is also known as
the cumulative distribution function (cdf), defined by

F (y) = P (x ≤ y) = P ({ω : ω ∈ Ω, x(ω) ≤ y}) .

143

A. Appendix

The expectation of x is given by

Ex =

∫
R
y dF (y) =

∫
Ω

x(ω)dP (ω) .

If Ex = 0, x is called centered. The variance of x is given by

Var (x) = E(x− Ex)2 = Ex2 − (Ex)2. (A.2)

If Var(x) = 1, x is called normalized. If x is both centered and normalized
(that is, Ex = 0 and Var(x) = 1), x is called standardized.

The above quantities are well defined only when the corresponding inte-
grals are finite. An example of a vector space of random variables defined on
(Ω,F ,P) whose expectations and variances are finite is

L2 (Ω,F ,P) =
{
x :

∫
Ω

|x(ω)| 2dP (ω) <∞
}
, (A.3)

theHilbert space of square-integrable random variables [56]. The inner prod-
uct in this vector space is defined by

⟨x1, x2⟩ = E(x1x2),

and the norm is defined by

∥x∥2 =
√
⟨x, x⟩

for any x, x1, and x2 in L2(Ω,F ,P).
If the distribution functionF of a random variable x is continuous, x is said

to be a continuous random variable. If, moreover, F is absolutely continuous,
x is said to have a density function f , which is also known as the probability
density function (pdf). In such a case,

F (y) =

∫ y

−∞
f(z)dz.

Other types of randomvariables, such as discrete randomvariables, are of little
relevance to this thesis; therefore, they are not covered here.

Suppose now that there is a set of n random variables {xi}ni=1. For conve-
nience, the variables are arranged in a vector x = (xi)

n
i=1 : Ω → Rn, which is

called a random vector and which can also be viewed as a single random vari-
able taking values in Rn. The variables obey a common distribution known
as the joint distribution, and the distribution of any subset of the variables is
called a marginal distribution. The individual variables are referred to as mu-
tually independent if their joint distribution function F factorizes as follows:

F (x) =

n∏
i=1

Fi(xi)

144

A.3. Bayesian Statistics

where Fi is the marginal distribution of xi for i = 1, . . . , n.
Analogously to the one-dimensional case, x has an expectation and a vari-

ance (if the integrals are finite) as well as a pdf (if the cdf is absolutely contin-
uous). In addition, the covariance of xi and xj is defined as follows:

Cov (xi, xj) = E((xi − Exi)(xj − Exj)).

If Cov(xi, xj) = 0, xi and xj are referred to as uncorrelated. Furthermore, the
covariance matrix of x is given by

Cov (x) = (Cov (xi, xj))n,ni=1,j=1 , (A.4)

which is a positive semidefinite matrix by definition. Lastly, a special case of
the covariance matrix is the correlation matrix

Corr (x) = diag (Cov (x))−
1
2Cov (x) diag (Cov (x))−

1
2 (A.5)

where diag(·) extracts the diagonal elements of its argument and yields a di-
agonal matrix. It can be shown that the correlation matrix is the covariance
matrix of a normalized version of x, that is, of(

xi√
Var(xi)

)n

i=1

.

The joint distribution of x : Ω → Rn can be unambiguously specified by a
set of n one-dimensional marginal distributions and an n-dimensional copula
[79]. The copula is a uniform distribution function on [0, 1]n that captures the
dependencies between the n individual variables contained in x = (xi).

A.3 Bayesian Statistics

Let x be an uncertain parameter that we would like to characterize. To this
end, the following information is at our disposal: (a) a set of observationsY of a
quantity y that depends on x; (b) a datamodel f that describes the relationship
between x and y, which is denoted by y = f(x); and (c) prior knowledge (or
beliefs) about x. A natural solution is Bayes’ theorem [42]

p(x|Y) ∝ p(Y |x)p(x)

where p denotes a pdf. In this context, p(Y |x) is known as the likelihood func-
tion; it accommodates the datamodel f and yields the relative likelihood of ob-
serving the data set Y given the parameter x, that is, given a particular assign-
ment of the uncertain parameter x. The distribution that corresponds to p(x)
is known as the prior (distribution) of x; it represents the knowledge about x
that is available prior to any observations. The distribution that corresponds

145

A. Appendix

to p(x|Y) is known as the posterior (distribution) of x; it yields the relative like-
lihood of the parameter x given the observations gathered in Y and taking the
prior knowledge about x into consideration. The posterior is an exhaustive so-
lution to our problem: having constructed p(x|Y), the required statistics about
x can be trivially estimated by taking samples from this posterior.

In practice, the posterior is unlikely to belong to any of the common fam-
ilies of probability distributions, which is due in part to the data model in-
volved in the likelihood function. Therefore, the sampling procedure is not
straightforward. In order to circumvent this difficulty, one usually relies on
Markov chain Monte Carlo sampling [42]. In this case, an ergodic Markov
chainwith the stationary distribution equal to the target posterior distribution
is constructed and then utilized for exploring the probability space.

A popular technique in this regard is the Metropolis–Hastings algorithm
[42] where the chain is constructed via sampling from a computationally con-
venient distribution known as the proposal (distribution). Each sample drawn
from the proposal is passed through the posterior in order to calculate its pos-
terior probability, which is then used to decide whether the sample should be
accepted or rejected. A rejectionmeans that the sequence of samples advances
using the last accepted sample—as if it was drawn once again. The acceptance
strategy of the algorithmpushes the produced chain of samples toward regions
of high posterior probability, which results in an adequate approximation of
the posterior after a sufficient number of steps, depending on the starting point
of the chain and the efficiency of the moves that have been made.

A.4 Probability Transformation

There are three probability transformations that are utilized in the thesis.
The first transformation T1 is the usual integral transformation. The tech-

nique allows one to transition from a random variable x1 with a distribution
function F1 to a random variable x2 with a distribution function F2 as

x2 = T1(x1) = (F−1
2 ◦ F1)(x1) = F−1

2 (F1(x1)

where F−1
2 is the inverse of F2, and the equality should be understood in dis-

tribution. In order for F−1
2 to exist, F2 is assumed to be a strictly increasing

function. By applying F1 to x1, we obtain a random variable with a uniform
distribution on [0, 1], and, by applying F−1

2 to such a uniform random variable,
we obtain a random variable distributed according to the target F2.

The second transformation T2 uses the Karhunen–Loève (kl) decomposi-
tion [43, 120] and, more specifically, its discrete version, which is also known
as principal component analysis [46]. The technique is based on the eigende-
composition given in Equation A.1 applied to Equation A.5, and it transforms
potentially correlated random variables into linearly uncorrelated ones. Con-
versely, the approach allows one to transition from a random vector x1 with

146

A.4. Probability Transformation

n1 linearly uncorrelated components to an n1-dimensional random vector x2

with a prescribed correlation structure. Having obtained the decomposition
in Equation A.1, the relationship between the two vectors is as follows:

x2 = T2(x1) = UΛ
1
2x1 (A.6)

where the eigenvalues contained in Λ correspond to the variances induced to
the uncorrelated variables when the transition is made. When x2 obeys a mul-
tivariate Gaussian distribution, the individual variables in x1 follow the stan-
dard Gaussian distribution and are mutually independent, and vice versa.

In addition, the eigendecomposition in Equation A.1 provides a means of
model order reduction. The intuition is that, since the variables inx2 are corre-
lated, x2 can be recovered sufficiently well from a small subset of the variables
in x1. Specifically, we are to select the smallest subset of x1 such that its cumu-
lative contribution to the variance of x2 is above a certain threshold. Formally,
assuming that {λi}n1

i=1 in Λ are sorted in the descending order and given a
threshold η ∈ (0, 1], which is the fraction of the variance to be preserved, we
are to identify the smallest n2 ≤ n1 such that∑n2

i=1 λi∑n1

i=1 λi
≥ η.

Then, given a vector x1 in the reduced space Rn1 , the corresponding vector x2

in the original space Rn2 can be lossily reconstructed as follows:

x2 ≈ T2(x1) = UΛ̃
1
2x1. (A.7)

In this formula, Λ̃ ∈ Rn2×n1 is a truncated version of Λ ∈ Rn2×n2 in Equa-
tion A.1: the matrix contains only the first n1 columns of Λ. When η is suffi-
ciently large, the dropped variables are considered insignificant or redundant.

The third transformationT3 builds upon the previous two transformations
and allows one to tackle the following problem. Letx1 : Ω→ Rn1 be a random
vector whose joint distribution is known and is the product of the marginal
distributions {F1i}n1

i=1 of the individual variables; therefore, the variables are
independent. Let also x2 : Ω → Rn2 be a random vector whose joint distri-
bution is unknown, and where the only available information about x2 is the
marginal distributions {F2i}n2

i=1 and correlation matrix Corr(x2), which are
not sufficient to recover the joint distribution in general. The goal is to trans-
formx1 into a random vector that has the samemarginal distributions and the
same correlation matrix as x2 and thereby closely approximates x2.

Making use of the first two transformations described above, we obtain a
potential solution, which is loosely denoted as follows:

x2 ≈ T3(x1) = (T1 ◦ T2 ◦ T1)(x1). (A.8)

First, using T1, the n1 independent variables x1 are transformed into n1 inde-
pendent uniform variables and then into n1 independent standard Gaussian

147

A. Appendix

variables, which should be understood elementwise. Second, using T2, the n1
independent standard Gaussian variables are transformed into n2 dependent
Gaussian variableswith a correlationmatrix that is carefully constructed based
on the knowledge about x2. Third, using T1, the n2 dependent Gaussian vari-
ables are transformed into n2 dependent uniform variables and then into n2
dependent variables with the marginal distributions {F2i}n2

i=1 and correlation
matrix Corr(x2), which approximate the n2 dependent variables x2.

The auxiliary correlation matrix mentioned above is constructed using the
Nataf model described in [74]; see also [70]. In fact, the two outermost trans-
formations in Equation A.8 without model order reduction are often referred
to as the Nataf transformation. The technique operates under the assumption
that the copula of x2 is elliptical. In the general case, it is an approximation.

A.5 Numerical Integration

In numerical integration, the integral of a function f : R→ R

I =

∫
R
f(x)dx

is approximated as
I ≈ Q1

i (f) =
∑
j∈J 1

i

f(xij)wij ,

which is a summation of the function’s values computed at prescribed points
andmultiplied by prescribed weights. This type of paring of a set of points and
a set of weights is called a quadrature. In the notation Q1

i , the superscript 1
indicates that it is a one-dimensional quadrature, and the subscript i ∈ N0

indicates the level of the quadrature. In the above formula,

X 1
i =

{
xij : j ∈ J 1

i

}
⊂ R and

W1
i =

{
wij : j ∈ J 1

i

}
⊂ R

are the points and weights of the quadrature, respectively, and J 1
i ⊂ N0 is an

index set. The cardinality of J 1
i depends on i and is denoted by ni = #J 1

i .
The level i is the index of the quadrature in the corresponding family of

quadratures with increasing precision. Precision refers to the maximum order
of polynomials that the quadrature integrates exactly [47]. To give an example,
consider Gaussian quadratures, which is a broad class of quadratures incorpo-
rating many families. The precision of a Gaussian quadrature with ni points
is 2ni − 1 [47]. In other words, a Gaussian quadrature with ni points is exact
for polynomials of order up to 2ni− 1. It is a remarkable property of Gaussian
quadratures, which makes them especially efficient and hence popular.

Different families of quadratures can have different relations between ni
and i. Even within the scope of the same family, the integration grid can be

148

A.5. Numerical Integration

made to grow differently with respect to i in order to attain certain properties,
such as being nested. For our purposes, it is sufficient to mention one type of
growth: slow linear growth. In this case, ni = i + 1. Assuming slow linear
growth, the previous paragraph can be extended by stating that a Gaussian
quadrature with ni points is exact for polynomials of order up to 2i+ 1.

In multiple dimensions, the integral of a function f : Rn → R

I =

∫
Rn

f(x)dx

is approximated as
I ≈ Qn

i (f) =
∑
j∈Jn

i

f(xij)wij

where i = (ik) ∈ Nn
0 and j = (jk) ∈ Nn

0 . In the above formula,

Xn
i = {xij : j ∈ J n

i } ⊂ Rn and

Wn
i = {wij : j ∈ J n

i } ⊂ R

and the points and weights, respectively, and J n
i ⊂ Nn

0 is an index set. The
cardinality of J n

i dependents on both n and i and is denoted by ni = #J n
i .

The foundation of an n-dimensional quadrature Qn
i is a set of one-

dimensional counterparts of various levels. The most straightforward con-
struction of such a quadrature is the full tensor product

Qn
i =

n⊗
k=1

Q1
ik
, (A.9)

in which case

xij = (xikjk)
n
k=1,

wij =

n∏
k=1

wikjk ,

J n
i = J 1

i1 × · · · × J
1
in , and (A.10)

ni = #J n
i =

n∏
k=1

#J 1
ik

=

n∏
k=1

nik .

It can be seen that, in this case, the growth of the number of points with respect
to the number of dimensions is exponential. In low dimensions, the growth is
manageable; however, in high dimensions, the situation changes dramatically,
as the number of points produced by this approach can easily explode.

To give an example [47], suppose that each one-dimensional quadrature
has only four points (ni = 4). Then, in 10 stochastic dimensions (n = 10),
the number of multivariate points becomes 1,048,576 (ni = nni = 410), which

149

A. Appendix

is far beyond being affordable. Moreover, it can be shown that most of the
points obtained by the full tensor product do not contribute to the asymptotic
accuracy and, therefore, are a waste of computation time. In particular, if the
integrandunder consideration is a polynomialwhose total order is constrained
according to a certain strategy, the full tensor product cannot take this infor-
mation into account. Consequently, a different construction technique should
be utilized in the case of high-dimensional integration problems.

An alternative construction is the Smolyak algorithm [101]; see also [36,
47, 64, 68]. The algorithm is a central technique in the field of not only inte-
gration but also interpolation; the latter is elaborated on in Appendix A.6. In
the context of integration, the algorithm combines a range of one-dimensional
quadratures in such a way that the resulting grid is tailored to be exact only for
a certain polynomial subspace. Such grids are called sparse grids, and they
allow for a significant reduction in the number of points and thus the subse-
quent work. For instance, in the example given earlier, the number of points
would be only 1581, which is a drastic decrease in computation time.

To begin with, define

Q1
−1 = 0,

∆Q1
i = Q1

i −Q1
i−1, and

∆Qn
i =

n⊗
k=1

∆Q1
ik
.

Smolyak’s formula of level lq is then as follows:

Qn
lq =

⊕
i∈In

lq

∆Qn
i . (A.11)

In the original (isotropic) formulation of the Smolyak algorithm,

Inlq = {i : i ∈ Nn
0 , ∥i∥1 ≤ lq} (A.12)

where ∥ · ∥1 stands for the Manhattan norm. The index set Inlq is called the
total-order index set [4, 36], and its cardinality can be calculated as follows:

#Inlq =

(
n+ lq
n

)
=

(n+ lq)!

n! lq!
. (A.13)

Note that Equation A.11 reduces to Equation A.9 if we let

Inlq = {i : i ∈ Nn
0 , ∥i∥∞ ≤ lq} .

Using Equation A.11, the integral in question is approximated as

I ≈ Qn
lq (f) =

∑
j∈Jn

lq

f(xj)wj .

150

A.6. Hierarchical Interpolation

Note that, for convenience, the points and weights of Qn
lq
are indexed using a

single one-dimensional set denoted by J n
lq
⊂ N0. Note also that, even though

the level lq is not indicated in the notation of points and weights, it should be
understood that points and weights are generally different for different levels.

Lastly, consider the following more general integral:

I =

∫
Rn

f(x)dF (x).

In this case, f is integrated with respect to a measure F : Rn → R [35] that
does not necessarily correspond to the usual Lebesgue measure, which is used
in the earlier examples. Since integrating with respect to a certain measure is
a very frequent operation, there are families of quadratures that are designed
to automatically take this aspect into account in the most common scenarios.
For instance, the Gauss–Hermite family is suitable for integratingwith respect
to the standard Gaussian measure, which can be seen in Equation A.24.

It is also worth emphasizing that quadratures are generally precomputed
and tabulated, since they do not depend on the function being integrated.

A.6 Hierarchical Interpolation

Let f : [0, 1] → R be a function in C([0, 1]), which is the space of continuous
functions defined on [0, 1]. The function is approximated by virtue of the fol-
lowing interpolation formula:

f ≈ A1
i (f) =

∑
j∈J 1

i

f(xij)eij . (A.14)

In the notationA1
i , the superscript 1 indicates the dimensionality, and the sub-

script i ∈ N0 indicates the level of the interpolant. In the above formula,

Xi =
{
xij : j ∈ J 1

i

}
⊂ [0, 1] and

Ei =
{
eij : j ∈ J 1

i

}
⊂ C ([0, 1])

are collocation nodes and basis functions, respectively, and J 1
i is an index set.

The cardinality ofJ 1
i depends on i and is denoted byni = #J 1

i . In this context,
the subscript j ∈ J 1

i is referred to as the order of a node or a function.
Let us now turn to the multidimensional case. Let f : [0, 1]n → R be a

function in C([0, 1]n), which is the space of continuous functions defined on
[0, 1]n. The function is approximated as

f ≈ An
i (f) =

∑
j∈Jn

i

f(xij)eij

where i = (ik) ∈ Nn
0 and j = (jk) ∈ Nn

0 . In the above formula,

Xi = {xij : j ∈ J n
i } ⊂ [0, 1]n and

Ei = {eij : j ∈ J n
i } ⊂ C ([0, 1]n)

151

A. Appendix

are the nodes and functions, respectively, and J n
i ⊂ Nn

0 is an index set. The
cardinality of J n

i depends on both n and i and is denoted by ni = #J n
i .

Similarly to Appendix A.5, the construction of An
i can be based on the full

tensor product of n one-dimensional interpolants as follows:

An
i =

n⊗
k=1

A1
ik
, (A.15)

in which case

xij = (xikjk)
n
k=1,

eij =

n⊗
k=1

eikjk , and

the index set J n
i is the same as the one in Equation A.10. The main obser-

vation with respect to the above construction is similar to the one made in
Appendix A.5: the number of collocation nodes grows exponentially as the
number of dimensions increases. Nevertheless, Equation A.15 serves well as a
building block for a more efficient algorithm, which we discuss next.

This algorithm is the Smolyak algorithm introduced in Appendix A.5. In
this context, the algorithm combines a number of one-dimensional inter-
polants in such a way that the resulting interpolant preserves the approximat-
ing power of the full tensor product only for a certain polynomial subspace,
which allows it to drastically reduce the number of collocation nodes.

Define

A1
−1 = 0,

∆A1
i = A1

i −A1
i−1, and (A.16)

∆An
i =

n⊗
k=1

∆A1
ik
.

The Smolyak algorithm of level ls is then

An
ls =

∑
i∈In

ls

∆An
i = An

ls−1 +
∑

i∈∆In
ls

∆An
i (A.17)

where

Inls = {i : i ∈ Nn
0 , ∥i∥1 ≤ ls} and

∆Inls = {i : i ∈ Nn
0 , ∥i∥1 = ls} . (A.18)

It can be seen in Equation A.17 that a Smolyak interpolant can be efficiently
refined: the work done in order to attain one level can be entirely recycled in

152

A.6. Hierarchical Interpolation

order to go to the next one. Regarding the collocation nodes, define

X 1
−1 = ∅,

∆X 1
i = X 1

i \ X 1
i−1, and

∆Xn
i = ∆X 1

i1 × · · · ×∆X 1
in .

The collocation nodes are then as follows:

Xn
ls =

∪
i∈In

ls

∆Xn
i = Xn

ls−1 ∪
∪

i∈∆In
ls

∆Xn
i . (A.19)

The above formula also shows how the collocation nodes of one level are re-
lated to the collocation nodes of the previous level. The sparsity and incre-
mental refinement of the Smolyak approach are remarkable properties per se;
however, the approach can be taken even further, as we discuss next.

It can be seen in EquationA.19 that it is beneficial to the refinement to have
X 1

i−1 be entirely included in X 1
i , since, in that case, the cardinality of

Xn
ls \ X

n
ls−1 =

∪
i∈∆In

ls

∆Xn
i

derived fromEquationA.19 decreases. To express this idea inwords, the values
of f obtained at lower levels can be reused in order to attain higher levels if the
grid grows without discarding its previous structure. With this in mind, the
rule used for generating successive sets of points {X 1

i } should be chosen to be
nested, that is, in such a way that X 1

i contains all the nodes present in X 1
i−1.

The last step is to rewrite Equation A.17 in a hierarchical form. To this
end, we require interpolants of higher levels to exactly represent interpolants
of lower levels. In one dimension, this means that

A1
i−1(f) = A1

i (A1
i−1(f)). (A.20)

The above condition can be satisfied by an appropriate choice of collocation
nodes and basis functions. Assuming that Equation A.20 holds and using
Equation A.14 and Equation A.16,

∆A1
i (f) =

∑
j∈∆J 1

i

(
f(xij)−A1

i−1(f)(xij)
)
eij

where
∆J 1

i =
{
j : j ∈ J 1

i , xij ∈ ∆X 1
i

}
.

The above summation is over ∆X 1
i due to the fact that the difference in the

parentheses is zerowhenxij ∈ X 1
i−1, sinceX 1

i−1 ⊂ X 1
i . Inmultiple dimensions,

∆An
i (f) =

∑
j∈∆Jn

i

(
f(xij)−An

ls−1(f)(xij)
)
eij (A.21)

153

A. Appendix

where ls = ∥i∥1 and

∆J n
i = {j : j ∈ J n

i ,xij ∈ ∆Xn
i } . (A.22)

The delta
∆f(xij) = f(xij)−An

ls−1(f)(xij) (A.23)

is referred to as a hierarchical surplus. When increasing the interpolation level,
this surplus is the difference between the actual value of the target function at
a new collocation node and the approximation of this value computed by the
hierarchical interpolant that has been constructed so far.

The final formula for (nonadaptive) hierarchical interpolation is obtained
by substituting Equation A.21 into Equation A.17. The result is

f ≈ An
ls(f) =

∑
i∈In

ls

∑
j∈∆Jn

i

∆f(xij)eij

= An
ls−1(f) +

∑
i∈∆In

ls

∑
j∈∆Jn

i

∆f(xij)eij

where∆f(xij) is computed according to Equation A.23.

A.7 Polynomial Chaos

Let L2(Ω,F ,P) be as in Equation A.3. Let also G ⊂ L2(Ω,F ,P) be the Gaus-
sian Hilbert space [56] spanned by n mutually independent standard Gaus-
sian random variables, which are denoted by x : Ω → Rn. Since the variables
are independent and standard, they form an orthonormal basis in G, and G
is n-dimensional. The variables induce a probability measure on Rn, and the
corresponding distribution function F is standard Gaussian given by

dF (y) = (2π)−
n
2 exp

(
−∥y∥2

2

2

)
dy. (A.24)

The inner product in the vector space of functions over G is defined as

⟨g, h⟩ =
∫
Rn

g(y)h(y)dF (y) (A.25)

for any g and h in this space, and the norm is defined as

∥g∥2 =
√
⟨g, g⟩.

LetΨlc(G) be the space of n-variate polynomials overG such that the total
order of each polynomial is at most lc ∈ N0. The space Ψlc(G) can be con-
structed as a span of n-variate Hermite polynomials [36, 68]

Ψlc(G) = span
({
ψi(y) : i ∈ Inlc ,y ∈ G

})
154

A.7. Polynomial Chaos

where i = (ik) ∈ Nn
0 , the index set Inlc is the one in Equation A.12, and

ψi(y) =

n∏
k=1

ψik(yk).

In the above formulae, ψik : R→ R is a normalized one-dimensional Hermite
polynomial of order ik. An important property of the polynomials {ψi} is that
they are mutually orthonormal with respect to F , which means that

⟨ψi, ψj⟩ = δij (A.26)

for any i = (ik) ∈ Nn
0 and j = (jk) ∈ Nn

0 where

δij =

n∏
k=1

δikjk ,

and δikjk is the Kronecker delta. In addition, the polynomials are centered
with respect to F ; therefore, the inner product in Equation A.25 applied to
two polynomials yields their correlation, which is zero due to the orthogonality.
Furthermore, the inner product applied to a polynomial with itself yields the
variance of that polynomial, which is unity due to the normality.

Define

∆Ψ−1 = ∅ and
∆Ψi = Ψi(G) ∩ Ψi−1(G)

⊥.

The vector spaces {∆Ψi}∞i=0 are mutually orthogonal, closed subspaces of
L2(Ω,F ,P). Since our scope of interest is restricted to functions of x, F is
assumed to be generated by x. Then, by the Cameron–Martin theorem,

L2 (Ω,F ,P) =
∞⊕
i=0

∆Ψi.

The decomposition is called the Wiener chaos decomposition; however, it is
more often referred to as the classical polynomial chaos (pc) decomposition.

The pc decomposition implies that any f ∈ L2(Ω,F ,P) admits the follow-
ing infinite expansion with respect to the polynomial basis:

f =
∑
i∈Nn

0

f̂iψi

where the equality should be understood in mean square. In practice, this
infinite expansion should be truncated, which we denote by

f ≈ Cnlc (f) =
∑
i∈In

lc

f̂iψi

155

A. Appendix

where Inlc is a certain index set, frequently the one given in Equation A.12. In
the notation Cnlc , the superscript n indicates that there are n random variables,
and the subscript lc indicates the level of the truncated expansion. Each coeffi-
cient f̂i is found by taking the inner product with respect to the corresponding
polynomial ψi on both sides of the above equation and making use of the or-
thogonality property shown in Equation A.26. The result is

f̂i = ⟨f, ψi⟩ . (A.27)

This operation is referred to as a spectral projection.
The classical pc decomposition can be generalized to other families of prob-

ability distributions besides the Gaussian one. Many distributions directly cor-
respond to certain families of orthogonal polynomials, which can be found in
theAskey scheme of orthogonal polynomials. A distribution that does not have
such a correspondence can be transformed into one of those that do using tech-
niques such as the one shown inAppendixA.4. Another solution is to construct
a custompolynomial basis using theGram–Schmidt process. Note that thema-
chinery of pc expansions is applicable to discrete probability distributions as
well. The interested reader is referred to [120] for further discussions.

156

Bibliography

[1] T. Adam, K. Chandy, and J. Dickson. “A comparison of list schedules
for parallel processing systems.” In:Communications of the ACM 17.12
(Dec. 1974), pp. 685–690.

[2] S. Asmussen and P. Glynn. Stochastic simulation: Algorithms and
analysis. Springer-Verlag New York, 2007.

[3] M. Bao, A. Andrei, P. Eles, and Z. Peng. “Temperature-aware idle time
distribution for energy optimization with dynamic voltage scaling.”
In: Design, Automation, and Test in Europe Conference. Mar. 2010,
pp. 21–26.

[4] J. Beck, F. Nobile, L. Tamellini, and R. Tempone. “Implementation of
optimal Galerkin and collocation approximations of PDEs with ran-
dom coefficients.” In: ESAIM: Proceedings 33 (Oct. 2011), pp. 10–21.

[5] L. Benini, D. Bertozzi, A. Bogliolo, F. Menichelli, and M. Olivieri.
“MPARM: Exploring the multi-processor SoC design space with Sys-
temC.” In: Journal of VLSI Signal Processing Systems 41.2 (Sept.
2005), pp. 169–182.

[6] S. Bhardwaj, S. Vrudhula, P. Ghanta, and Y. Cao. “Modeling of intra-
die process variations for accurate analysis and optimization of nano-
scale circuits.” In:Design Automation Conference. July 2006, pp. 791–
796.

[7] S. Bhardwaj, S. Vrudhula, and A. Goel. “A unified approach for
full chip statistical timing and leakage analysis of nanoscale circuits
considering intradie process variations.” In: IEEE Transactions on
Computer-AidedDesign of Integrated Circuits and Systems 27.10 (Oct.
2008), pp. 1812–1825.

157

Bibliography

[8] C. Bienia. “Benchmarking modern multiprocessors.” PhD thesis.
Princeton University, Jan. 2011.

[9] J. Cao, J. Fu, M. Li, and J. Chen. “CPU load prediction for cloud envi-
ronment based on a dynamic ensemble model.” In: Software: Practice
and Experience 44.7 (July 2014), pp. 793–804.

[10] T. Carlson,W.Heirman, and L. Eeckhout. “Sniper: Exploring the level
of abstraction for scalable and accurate parallel multi-core simula-
tions.” In: International Conference for High Performance Computing,
Networking, Storage and Analysis. Nov. 2011, 52:1–52:12.

[11] S. Chandra, K. Lahiri, A. Raghunathan, and S. Dey. “Variation-aware
system-level power analysis.” In: IEEE Transactions on Very Large
Scale Integration Systems 18.8 (Aug. 2010), pp. 1173–1184.

[12] A. Chandrakasan,W. Bowhill, and F. Fox.Design of high-performance
microprocessor circuits. Wiley-IEEE Press, 2000.

[13] S.-C. Chang, S.-Y. Deng, and J. Lee. “Electrical characteristics and reli-
ability properties ofMOSFETwithDy2O3gate dielectric.” In:Applied
Physics Letters 89.5 (Aug. 2006).

[14] M. Chaudhry, T. Ling, A. Manzoor, S. Hussain, and J. Kim. “Thermal-
aware scheduling in green data centers.” In: ACMComputing Surveys
47.3 (Feb. 2015), 39:1–39:48.

[15] L. Cheng, P. Gupta, C. Spanos, K. Qian, and L. He. “Physically justifi-
able die-levelmodeling of spatial variation in view of systematic across
wafer variability.” In: IEEETransactions onComputer-AidedDesign of
Integrated Circuits and Systems 30.3 (Mar. 2011), pp. 388–401.

[16] Collection of supplementary materials. Embedded Systems Labora-
tory. Nov. 2017. url: https://www.ida.liu.se/labs/eslab/
alumni/ivanukhov/research/2012-SDTA/.

[17] Collection of supplementary materials. Embedded Systems Labora-
tory. Nov. 2017. url: https://www.ida.liu.se/labs/eslab/
alumni/ivanukhov/research/2014-SAPV/.

[18] Collection of supplementary materials. Embedded Systems Labora-
tory. Nov. 2017. url: https://www.ida.liu.se/labs/eslab/
alumni/ivanukhov/research/2014-PAPT/.

[19] Collection of supplementary materials. Embedded Systems Labora-
tory. Nov. 2017. url: https://www.ida.liu.se/labs/eslab/
alumni/ivanukhov/research/2015-RAPV/.

[20] Collection of supplementary materials. Embedded Systems Labora-
tory. Nov. 2017. url: https://www.ida.liu.se/labs/eslab/
alumni/ivanukhov/research/2017-PAAI/.

158

https://www.ida.liu.se/labs/eslab/alumni/ivanukhov/research/2012-SDTA/
https://www.ida.liu.se/labs/eslab/alumni/ivanukhov/research/2012-SDTA/
https://www.ida.liu.se/labs/eslab/alumni/ivanukhov/research/2014-SAPV/
https://www.ida.liu.se/labs/eslab/alumni/ivanukhov/research/2014-SAPV/
https://www.ida.liu.se/labs/eslab/alumni/ivanukhov/research/2014-PAPT/
https://www.ida.liu.se/labs/eslab/alumni/ivanukhov/research/2014-PAPT/
https://www.ida.liu.se/labs/eslab/alumni/ivanukhov/research/2015-RAPV/
https://www.ida.liu.se/labs/eslab/alumni/ivanukhov/research/2015-RAPV/
https://www.ida.liu.se/labs/eslab/alumni/ivanukhov/research/2017-PAAI/
https://www.ida.liu.se/labs/eslab/alumni/ivanukhov/research/2017-PAAI/

Bibliography

[21] Collection of supplementary materials. Embedded Systems Labora-
tory. Nov. 2017. url: https://www.ida.liu.se/labs/eslab/
alumni/ivanukhov/research/2017-PRU/.

[22] Collection of supplementary materials. Embedded Systems Labora-
tory. Nov. 2017. url: https://www.ida.liu.se/labs/eslab/
alumni/ivanukhov/research/2017-FSPT/.

[23] A. Coskun, T. Rosing, and K. Gross. “Proactive temperature manage-
ment in MPSoCs.” In: ACM/IEEE International Symposium on Low
Power Electronics and Design. Aug. 2008, pp. 165–170.

[24] A. Coskun, T. Rosing, K.Mihic, G. DeMicheli, and Y. Leblebici. “Anal-
ysis and optimization of MPSoC reliability.” In: Journal of Low Power
Electronics 2.1 (Apr. 2006), pp. 56–69.

[25] M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes. “Energy-
efficient resource allocation and provisioning framework for cloud
data centers.” In: IEEE Transactions on Network and ServiceManage-
ment 12.3 (Sept. 2015), pp. 377–391.

[26] A. Das, A. Kumar, and B. Veeravalli. A survey of lifetime reliability-
aware system-level design techniques for embeddedmultiprocessor sys-
tems. Tech. rep. National University of Singapore, 2014.

[27] A.Das, A. Kumar, andB. Veeravalli.Reliability-aware platform-based
design methodology for energy-efficient multiprocessor systems. Tech.
rep. National University of Singapore, 2014.

[28] A. Das, R. Shafik, G. Merrett, B. Al-Hashimi, A. Kumar, and B. Veer-
avalli. “Reinforcement learning-based inter- and intra-application
thermal optimization for lifetime improvement of multicore systems.”
In: Design Automation Conference. June 2014, 170:1–170:6.

[29] T. Davis. “Algorithm 832: UMFPACK.” In: ACM Transactions on
Mathematical Software 30.2 (June 2004), pp. 196–199.

[30] T. DeMazancourt and D. Gerlic. “The inverse of a block-circulant ma-
trix.” In: IEEE Transactions on Antennas and Propagation 31.5 (Sept.
1983), pp. 808–810.

[31] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. “A fast and elitist
multiobjective genetic algorithm: NSGA-II.” In: IEEE Transactions
on Evolutionary Computation 6.2 (Apr. 2002), pp. 182–197.

[32] J. Díaz, D. García, K. Kim, C.-G. Lee, L. Bello, J. López, S. Min, and
O. Mirabella. “Stochastic analysis of periodic real-time systems.” In:
IEEE Real-Time Systems Symposium. Dec. 2002, pp. 289–300.

[33] I. Díaz-Emparanza. “Is a small Monte Carlo analysis a good analysis?”
In: Statistical Papers 43.4 (Oct. 2002), pp. 567–577.

159

https://www.ida.liu.se/labs/eslab/alumni/ivanukhov/research/2017-PRU/
https://www.ida.liu.se/labs/eslab/alumni/ivanukhov/research/2017-PRU/
https://www.ida.liu.se/labs/eslab/alumni/ivanukhov/research/2017-FSPT/
https://www.ida.liu.se/labs/eslab/alumni/ivanukhov/research/2017-FSPT/

Bibliography

[34] R. Dick, D. Rhodes, and W. Wolf. “TGFF: Task graphs for free.” In:
International Workshop on Hardware/Software Codesign. Mar. 1998,
pp. 97–101.

[35] R.Durrett.Probability: Theory and examples. 4th ed. CambridgeUni-
versity Press, 2010.

[36] M. Eldred, C. Webster, and P. Constantine. “Evaluation of non-
intrusive approaches for Wiener–Askey generalized polynomial
chaos.” In: AIAA Non-Deterministic Approaches Conference. 2008.

[37] Failure mechanisms and models for semiconductor devices. JEDEC
Solid State Technology Association, 2016.

[38] FFmpeg. Nov. 2017. url: https://ffmpeg.org/.
[39] F. Firouzi, S. Kiamehr, M. Tahoori, and S. Nassif. “Incorporating the

impacts of workload-dependent runtime variations into timing anal-
ysis.” In: Design, Automation, and Test in Europe Conference. Mar.
2013, pp. 1022–1025.

[40] J. Fourier and A. Freeman. The analytical theory of heat. Cambridge
University Press, 2009.

[41] P. Friedberg, Y. Cao, J. Cain, R. Wang, J. Rabaey, and C. Spanos.
“Modeling within-die spatial correlation effects for process-design co-
optimization.” In: Symposium on Quality of Electronic Design. Mar.
2005, pp. 516–521.

[42] A. Gelman, J. Carlin, H. Stern, D. Dunson, A. Vehtari, and D. Rubin.
Bayesian data analysis. 3rd ed. CRC Press, 2013.

[43] R. Ghanem and P. Spanos. Stochastic finite elementmethod: A spectral
approach. Springer-Verlag New York, 1991.

[44] P. Ghanta, S. Vrudhula, S. Bhardwaj, and R. Panda. “Stochastic varia-
tional analysis of large power grids considering intra-die correlations.”
In: Design Automation Conference. July 2006, pp. 211–216.

[45] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT Press,
2016.

[46] T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical
learning: Data mining, inference, and prediction. 2nd ed. Springer-
Verlag New York, 2013.

[47] F. Heiss and V. Winschel. “Likelihood approximation by numerical
integration on sparse grids.” In: Journal of Econometrics 144.1 (May
2008), pp. 62–80.

[48] M. Hochbruck and A. Ostermann. “Exponential integrators.” In: Acta
Numerica 19 (May 2010), pp. 209–286.

[49] S. Hochreiter and J. Schmidhuber. “Long short-term memory.” In:
Neural Computation 9.8 (Nov. 1997), pp. 1735–1780.

160

https://ffmpeg.org/

Bibliography

[50] L. Huang, F. Yuan, and Q. Xu. “Lifetime reliability-aware task alloca-
tion and scheduling for MPSoC platforms.” In: Design, Automation,
and Test in Europe Conference. Apr. 2009, pp. 51–56.

[51] P.-Y. Huang, J.-H. Wu, and Y.-M. Lee. “Stochastic thermal simulation
considering spatial correlated within-die process variations.” In: Asia
and South Pacific Design Automation Conference. Jan. 2009, pp. 31–
36.

[52] W. Huang, K. Sankaranarayanan, K. Skadron, R. Ribando, and M.
Stan. “Accurate, pre-RTL temperature-aware design using a param-
eterized, geometric thermal model.” In: IEEE Transactions on Com-
puters 57.9 (Sept. 2008), pp. 1277–1288.

[53] S. Ismaeel and A. Miri. “Using ELM techniques to predict data centre
VM requests.” In: IEEE International Conference on Cyber Security
and Cloud Computing. Nov. 2015, pp. 80–86.

[54] ITRS Reports. International Technology Roadmap for Semiconduc-
tors. Nov. 2017. url: http://www.itrs2.net/.

[55] J. Jakeman and S. Roberts. “Local and dimension adaptive stochastic
collocation for uncertainty quantification.” In: Sparse Grids and Ap-
plications. Springer-Verlag Berlin Heidelberg, 2012, pp. 181–203.

[56] S. Janson.GaussianHilbert spaces. Cambridge University Press, 1997.

[57] S. Joe and F. Kuo. “Constructing Sobol sequences with better two-
dimensional projections.” In: SIAM Journal on Scientific Computing
30.5 (2008), pp. 2635–2654.

[58] D.-C. Juan, Y.-L. Chuang, D. Marculescu, and Y.-W. Chang. “Statis-
tical thermal modeling and optimization considering leakage power
variations.” In: Design, Automation, and Test in Europe Conference.
Apr. 2012, pp. 605–610.

[59] D.-C. Juan, S. Garg, and D. Marculescu. “Statistical thermal evalu-
ation and mitigation techniques for 3D chip-multiprocessors in the
presence of process variations.” In: Design, Automation, and Test in
Europe Conference. Mar. 2011, pp. 383–388.

[60] D.-C. Juan, S. Garg, and D. Marculescu. “Statistical peak temperature
prediction and thermal yield improvement for 3D chip multiproces-
sors.” In: ACM Transactions on Design Automation of Electronic Sys-
tems 19.4 (Aug. 2014), 39:1–39:23.

[61] S. Kiamehr, F. Firouzi, and M. Tahoori. “Aging-aware timing analysis
considering combined effects of NBTI and PBTI.” In: International
Symposium on Quality Electronic Design. Mar. 2013, pp. 53–59.

161

http://www.itrs2.net/

Bibliography

[62] S. Kiamehr, P. Weckx, M. Tahoori, B. Kaczer, H. Kukner, P. Raghavan,
G. Groeseneken, and F. Catthoor. “The impact of process variation and
stochastic aging in nanoscale VLSI.” In: IEEE International Reliabil-
ity Physics Symposium. Apr. 2016, pp. CR-1-1–CR-1-6.

[63] D. Kingma and J. Ba. “Adam: A method for stochastic optimization.”
In: CoRR (Dec. 2014). arXiv: 1412.6980.

[64] A. Klimke. “Uncertainty modeling using fuzzy arithmetic and sparse
grids.” PhD thesis. Universität Stuttgart, 2006.

[65] O. Knio and O. Le Maître. “Uncertainty propagation in CFD using
polynomial chaos decomposition.” In: Fluid Dynamics Research 38.9
(Sept. 2006), pp. 616–640.

[66] F. Kreith. CRC handbook of thermal engineering. CRC Press, 2000.

[67] P. Kumar andD. Atienza. “Neural network based on-chip thermal sim-
ulator.” In: IEEE International Symposium on Circuits and Systems.
May 2010, pp. 1599–1602.

[68] O. Le Maître and O. Knio. Spectral methods for uncertainty quantifi-
cation with applications to computational fluid dynamics. Springer
Netherlands, 2010.

[69] Y.-M. Lee and P.-Y. Huang. “An efficientmethod for analyzing on-chip
thermal reliability considering process variations.” In: ACM Transac-
tions on Design Automation of Electronic Systems 18.3 (July 2013),
41:1–41:32.

[70] H. Li, Z. Lü, and X. Yuan. “Nataf transformation based point estimate
method.” In: Chinese Science Bulletin 53.17 (Sept. 2008), pp. 2586–
2592.

[71] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar.
“Efficient hyperparameter optimization and infinitely many armed
bandits.” In: CoRR (Mar. 2016). arXiv: 1603.06560.

[72] S. Li, J. Ahn, R. Strong, J. Brockman, D. Tullsen, and N. Jouppi. “Mc-
PAT: An integrated power, area, and timing modeling framework for
multicore and manycore architectures.” In: IEEE/ACM International
Symposium on Microarchitecture. Dec. 2009, pp. 469–480.

[73] W. Liao, L. He, and K. Lepak. “Temperature and supply voltage
aware performance and power modeling at mictoarchitecture level.”
In: IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems 24.7 (July 2005), pp. 1042–1053.

[74] P.-L. Liu and A. Der Kiureghian. “Multivariate distribution models
with prescribed marginals and covariances.” In: Probabilistic Engi-
neering Mechanics 1.2 (June 1986), pp. 105–112.

162

https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1603.06560

Bibliography

[75] Y. Liu, R. Dick, L. Shang, and H. Yang. “Accurate temperature-
dependent integrated circuit leakage power estimation is easy.” In:De-
sign, Automation, andTest inEurope Conference. Apr. 2007, pp. 1526–
1531.

[76] X. Ma and N. Zabaras. “An adaptive hierarchical sparse grid colloca-
tion algorithm for the solution of stochastic differential equations.” In:
Journal of Computational Physics 228.8 (May 2009), pp. 3084–3113.

[77] Y. Marzouk and H. Najm. “Dimensionality reduction and polyno-
mial chaos acceleration of Bayesian inference in inverse problems.” In:
Journal of Computational Physics 228.6 (Apr. 2009), pp. 1862–1902.

[78] F. Mesa-Martinez, J. Nayfach-Battilana, and J. Renau. “Power model
validation through thermal measurements.” In: ACM/IEEE Interna-
tional Symposium of Computer Architecture. May 2007, pp. 302–311.

[79] R. Nelsen. An introduction to copulas. 2nd ed. Springer-Verlag New
York, 2006.

[80] M. Niknafs, I. Ukhov, P. Eles, and Z. Peng. “Two-phase interarrival
time prediction for runtime resource management.” In: Euromicro
Conference on Digital System Design. Aug. 2017, pp. 524–528.

[81] M. Niknafs, I. Ukhov, P. Eles, and Z. Peng. “Workload prediction for
runtime resource management.” In: IEEENordic Circuits and System
Conference. Oct. 2017.

[82] F. Nobile, R. Tempone, and C. Webster. “An anisotropic sparse grid
stochastic collocationmethod for elliptic partial differential equations
with random input data.” In: SIAM Journal on Numerical Analysis
46.5 (May 2008), pp. 2411–2442.

[83] F. Oboril and M. Tahoori. “ExtraTime: Modeling and analysis
of wearout due to transistor aging at microarchitecture-level.” In:
IEEE/IFIP International Conference on Dependable Systems and Net-
works. June 2012, pp. 1–12.

[84] S. Paek, S.-H. Moon, W. Shin, J. Sim, and L.-S. Kim. “PowerField: A
transient temperature-to-power technique based on Markov random
field theory.” In: Design Automation Conference. June 2012, pp. 630–
635.

[85] S. Pagani, J.-J. Chen, M. Shafique, and J. Henkel. “MatEx: Efficient
transient and peak temperature computation for compact thermal
models.” In:Design, Automation, and Test in Europe Conference. Mar.
2015, pp. 1515–1520.

[86] S. Pagani, H. Khdr, W. Munawar, J.-J. Chen, M. Shafique, M. Li, and
J. Henkel. “Thermal safe power: Efficient power budgeting for many-
core systems in dark silicon.” In: International Conference on Hard-
ware/Software Codesign and System Synthesis. Oct. 2014, 10:1–10:10.

163

Bibliography

[87] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Numerical
recipes: The art of scientific computing. 3rd ed. Cambridge University
Press, 2007.

[88] S. Quinton, R. Ernst, D. Bertrand, and P. Yomsi. “Challenges and new
trends in probabilistic timing analysis.” In: Design, Automation, and
Test in Europe Conference. Mar. 2012, pp. 810–815.

[89] D. Rai, H. Yang, I. Bacivarov, J.-J. Chen, and L. Thiele. “Worst-case
temperature analysis for real-time systems.” In: Design, Automation,
and Test in Europe Conference. Mar. 2011, pp. 631–636.

[90] R. Rao. Linear statistical inference and its applications. 2nd ed.
Wiley-Interscience, 2002.

[91] R. Rao and S. Vrudhula. “Fast and accurate prediction of the steady-
state throughput of multicore processors under thermal constraints.”
In: IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems 28.10 (Oct. 2009), pp. 1559–1572.

[92] C. Rasmussen and C.Williams.Gaussian processes for machine learn-
ing. MIT Press, 2006.

[93] S. Reda and S. Nassif. “Analyzing the impact of process variations on
parametric measurements: Novel models and applications.” In: De-
sign, Automation, and Test in Europe Conference. Apr. 2009, pp. 375–
380.

[94] C. Reiss, J. Wilkes, and J. Hellerstein.Google cluster-usage traces: For-
mat and schema. Tech. rep. Google Inc., Nov. 2011. url: https://
github.com/google/cluster-data.

[95] M. Rosenblatt. “Remarks on a multivariate transformation.” In: An-
nals of Mathematical Statistics 23.3 (Sept. 1952), pp. 470–472.

[96] L. Santinelli, P. Yomsi, D. Maxim, and L. Cucu-Grosjean. “A
component-based framework for modeling and analyzing probabilis-
tic real-time systems.” In: IEEE International Conference onEmerging
Technologies And Factory Automation. Sept. 2011, pp. 1–8.

[97] M. Schmitz, B. Al-Hashimi, and P. Eles. System-level design tech-
niques for energy-efficient embedded systems. Springer US, 2004.

[98] A. Schranzhofer, J.-J. Chen, and L. Thiele. “Power-aware mapping of
probabilistic applications onto heterogeneous MPSoC platforms.” In:
IEEE Real-Time and Embedded Technology and Applications Sympo-
sium. Apr. 2009, pp. 151–160.

[99] R. Shen, N. Mi, S. Tan, Y. Cai, and X. Hong. “Statistical modeling and
analysis of chip-level leakage power by spectral stochastic method.”
In: Asia and South Pacific Design Automation Conference. Jan. 2009,
pp. 161–166.

164

https://github.com/google/cluster-data
https://github.com/google/cluster-data

Bibliography

[100] K. Skadron, M. Stan, W. Huang, S. Velusamy, K. Sankara-
narayanan, and D. Tarjan. “Temperature-aware microarchitecture.”
In: ACM/IEEE Annual International Symposium on Computer Ar-
chitecture. June 2003, pp. 2–13.

[101] S. Smolyak. “Quadrature and interpolation formulas for tensor prod-
ucts of certain classes of functions.” In:DokladyAkademiiNauk SSSR
148.5 (1963), pp. 1042–1045.

[102] J. Srinivasan, S. Adve, P. Bose, and J.Rivers. “The impact of technology
scaling on lifetime reliability.” In: IEEE/IFIP International Conference
on Dependable Systems and Networks. June 2004, pp. 177–186.

[103] A. Srivastava, D. Sylvester, and D. Blaauw. Statistical analysis and
optimization for VLSI: Timing and power. Springer US, 2010.

[104] J. Stoer and R. Bulirsch. Introduction to numerical analysis. 3rd ed.
Springer New York, 2002.

[105] B. Tanasa, U. Bordoloi, P. Eles, and Z. Peng. “Probabilistic response
time and joint analysis of periodic tasks.” In: Euromicro Conference
on Real-Time Systems. July 2015, pp. 235–246.

[106] The BSIM4 model. Berkeley short-channel IGFET model group. Nov.
2017. url: https://bsim.berkeley.edu/models/bsim4/.

[107] The NanGate 45nm open cell library. NanGate. Nov. 2017. url: http:
//www.nangate.com/.

[108] The predictive technologymodel. Nanoscale Integration andModeling
Group. Nov. 2017. url: http://ptm.asu.edu/.

[109] L. Thiele, L. Schor, H. Yang, and I. Bacivarov. “Thermal-aware system
analysis and software synthesis for embedded multi-processors.” In:
Design Automation Conference. June 2011, pp. 268–273.

[110] I. Ukhov, M. Bao, P. Eles, and Z. Peng. “Steady-state dynamic temper-
ature analysis and reliability optimization for embedded multiproces-
sor systems.” In: Design Automation Conference. June 2012, pp. 197–
204. doi: 10.1145/2228360.2228399.

[111] I. Ukhov, P. Eles, and Z. Peng. “Probabilistic analysis of power and
temperature under process variation for electronic system design.” In:
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 33.6 (June 2014), pp. 931–944. doi: 10.1109/TCAD.
2014.2301672.

[112] I. Ukhov, P. Eles, and Z. Peng. “Temperature-centric reliability anal-
ysis and optimization of electronic systems under process variation.”
In: IEEE Transactions on Very Large Scale Integration Systems 23.11
(Nov. 2015), pp. 2417–2430. doi: 10.1109/TVLSI.2014.2371249.

165

https://bsim.berkeley.edu/models/bsim4/
http://www.nangate.com/
http://www.nangate.com/
http://ptm.asu.edu/
https://doi.org/10.1145/2228360.2228399
https://doi.org/10.1109/TCAD.2014.2301672
https://doi.org/10.1109/TCAD.2014.2301672
https://doi.org/10.1109/TVLSI.2014.2371249

Bibliography

[113] I. Ukhov, P. Eles, and Z. Peng. “Probabilistic analysis of electronic sys-
tems via adaptive hierarchical interpolation.” In: IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 36.11
(Nov. 2017), pp. 1883–1896. doi: 10.1109/TCAD.2017.2705117.

[114] I. Ukhov, D. Marculescu, P. Eles, and Z. Peng. Fast synthesis of power
and temperature profiles for the development of data-driven resource
managers. Tech. rep. Linköping University, Sept. 2017.

[115] I.Ukhov,D.Marculescu, P. Eles, andZ. Peng.Fine-grained long-range
prediction of resource usage in computer clusters. Tech. rep. Linköping
University, Sept. 2017.

[116] I. Ukhov, M. Villani, P. Eles, and Z. Peng. “Statistical analysis of pro-
cess variation based on indirect measurements for electronic system
design.” In:Asia andSouthPacificDesignAutomationConference. Jan.
2014, pp. 436–442. doi: 10.1109/ASPDAC.2014.6742930.

[117] S. Vrudhula, J. Wang, and P. Ghanta. “Hermite polynomial based in-
terconnect analysis in the presence of process variations.” In: IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems 25.10 (Oct. 2006), pp. 2001–2011.

[118] Y. Xiang, T. Chantem, R. Dick, S. Hu, and L. Shang. “System-level reli-
ability modeling for MPSoCs.” In: International Conference on Hard-
ware/Software Codesign and System Synthesis. Oct. 2010, pp. 297–
306.

[119] Y. Xie and W.-L. Hung. “Temperature-aware task allocation and
scheduling for embedded MPSoC design.” In: Journal of VLSI Signal
Processing Systems 45.3 (Dec. 2006), pp. 177–189.

[120] D. Xiu. Numerical methods for stochastic computations: A spectral
method approach. Princeton University Press, 2010.

[121] C.-Y. Yang, J.-J. Chen, L. Thiele, and T.-W. Kuo. “Energy-efficient real-
time task scheduling with temperature-dependent leakage.” In: De-
sign, Automation, and Test in Europe Conference. Mar. 2010, pp. 9–
14.

[122] W. Zaremba, I. Sutskever, and O. Vinyals. “Recurrent neural network
regularization.” In: CoRR (Sept. 2014). arXiv: 1409.2329.

[123] W. Zhang, X. Li, and R. Rutenbar. “Bayesian virtual probe: Minimiz-
ing variation characterization cost for nanoscale IC technologies via
Bayesian inference.” In: Design Automation Conference. June 2010,
pp. 262–267.

[124] D. Zhu, H. Aydin, and J.-J. Chen. “Optimistic reliability aware energy
management for real-time tasks with probabilistic execution times.”
In: IEEE Real-Time Systems Symposium. Nov. 2008, pp. 313–322.

166

https://doi.org/10.1109/TCAD.2017.2705117
https://doi.org/10.1109/ASPDAC.2014.6742930
https://arxiv.org/abs/1409.2329

	Abstract
	Acknowledgments
	Table of Contents
	List of Algorithms
	List of Figures
	List of Tables
	Introduction
	Uncertainty
	Process Variation
	Workload Variation
	Aging Variation

	Motivation
	Objective
	Contribution
	Previous Work
	Thesis Overview
	Publication Overview

	Background
	System Model
	Power Model
	Temperature Model
	Reliability Model
	Periodic Thermal Stress
	Thermal-Cycling Fatigue

	Analysis and Design with Certainty
	Introduction
	Transient Analysis
	Previous Work
	Proposed Solution

	Static Steady-State Analysis
	Dynamic Steady-State Analysis
	Previous Work
	Proposed Solution
	Experimental Results

	Power-Temperature Interdependence
	Reliability Optimization
	Motivational Example
	Problem Formulation
	Proposed Solution
	Experimental Results

	Conclusion

	Analysis of Process Uncertainty
	Introduction
	Motivational Example
	Problem Formulation
	Previous Work
	Proposed Solution
	Data Model
	Statistical Model
	Optimization Procedure
	Sampling Procedure
	Post-Processing

	Experimental Results
	Number of Measurement Sites
	Number of Measurement Points
	Number of Data Instances
	Deviation of Measurement Noise
	Sequential and Parallel Sampling

	Conclusion

	Analysis and Design under Process Uncertainty
	Introduction
	Motivational Example
	Problem Formulation
	Previous Work
	Proposed Solution
	Uncertainty Analysis
	Problem Formulation
	Probability Transformation
	Surrogate Construction
	Post-Processing

	Transient Analysis
	Problem Formulation
	Surrogate Construction

	Transient Analysis: Illustrative Application
	Problem Formulation
	Probability Transformation
	Surrogate Construction
	Post-Processing

	Transient Analysis: Experimental Results
	Approximation Accuracy
	Computational Speed

	Dynamic Steady-State Analysis
	Problem Formulation
	Surrogate Construction

	Reliability Analysis
	Problem Formulation
	Surrogate Construction

	Energy Optimization
	Problem Formulation
	Post-Processing

	Energy Optimization: Illustrative Application
	Problem Formulation
	Probability Transformation
	Surrogate Construction

	Energy Optimization: Experimental Results
	Approximation Accuracy
	Computational Speed
	Optimization Effectiveness

	Conclusion

	Analysis under Workload Uncertainty
	Introduction
	Motivational Example
	Problem Formulation
	Previous Work
	Proposed Solution
	Probability Transformation
	Surrogate Construction
	Collocation Nodes
	Basis Functions
	Hybrid Adaptivity
	Implementation

	Post-Processing
	Illustrative Application
	Problem Formulation
	Probability Transformation
	Post-Processing

	Experimental Results
	Approximation Accuracy
	Real-Life Deployment

	Conclusion

	Management under Workload Uncertainty
	Introduction
	Problem Formulation
	Previous Work
	Proposed Solution
	Data Pipeline
	Predictive Model
	Learning Pipeline

	Experimental Results
	Data Pipeline
	Learning Pipeline

	Conclusion

	Conclusion
	Present Work
	Future Work

	Appendix
	Linear Algebra
	Probability Theory
	Bayesian Statistics
	Probability Transformation
	Numerical Integration
	Hierarchical Interpolation
	Polynomial Chaos

	Bibliography

