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INtroduction

& Temperature is important.



lemperature Analysis

& Steady-State Temperature Analysis.
& Transient Temperature Analysis.

& Steady-State Dynamic Temperature Analysis.



Architecture Model

& Multiprocessor systems running periodic applications.

1l = {ﬂ-z F szv f’w gatez }

Core \ Numlber
of gates

Voltage Frequency



Power Model

& Total Power = Dynamic Power + Leakage Power
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Thermal Model: RC Analogy

& How to model temperature? Construct a circuit!
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Thermal Model: Heat Equation

& System of differential equations.

dT(t)

C

/

Capacitance

dt

Conductance

Eetit e e e P
¢

.

Temperature



Power & lemperature Profiles

For all cores and
all time intervals
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& Discrete dynamic power profile:

& Steady-State Dynamic Temperature Profile (SSDTP):
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Problem Formulation

Given:

& Multiprocessor architecture. ]PD

& Periodic dynamic power profile. dyn
& Floorplan of the die.

& Configuration of the thermal package. \U/
FIind:

& Periodic temperature profile (SSDTP). | |



State of the Art Solutions: T TA

& Looong transient temperature simulation.
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State of the Art Solutions: SSA

& Approximation with steady-state temperature.
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Analytical Solution

& Heat equation can be solved analytically”.
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Transient Temperature Steady-State Dynamic
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Recurrence for SSDITP

& Recurrent equation with a boundary condition.
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Linear System

& System of linear equations.
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Straight-Forward Solutions

& Direct dense and sparse solvers.
& [terative solutions.
& Block Toeplitz and circulant approaches (e.g., FFT).

Do not consider the structure.
Do not consider the sparseness.
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Specific Structure

& One block diagonal + two subdiagonals.
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Proposed Method (PM)
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PM: Auxiliary Transformation

& [Cxpensive operations with matrices.

Inverse
Exponent ;
& But not with symmetric matrices. Figenvalue
decomposition
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PM: Condensed Eqguation

& WO successive recurrences.
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Features of the Proposed Method

Takes into account the structure.
Operates on a few small matrices.

Linearly depends on the number of steps.

One-time auxiliary work.
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Performance

&€ 2000-5000 times faster than with HotSpot.

Scalability Scalability
with period with cores

—
OO

) )
o [}
£ £
= =
(- C
O S
— e
®© S
S >
o o
g s
(@)
o Q
(@))
153 3

Proposed Method

FFT Method (Block-Circulant)

TTA with Analytical Solution
—+H— TTA with HotSpot
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1. lemperature-Aware
Reliability Optimization

22



Application Model

& Task graph of data-dependent tasks.

Application
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Reliability Model

& Thermal cycling failure mechanism.

T ~ Weibull(n, B)
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Motivational Example: Task Graph

& Consider 2 cores and an application with 6 tasks...
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Motivational Example: SSDTPs

& Alternative mappings and schedules + their SSDTPs.

hermal
Cycling
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Problem Formulation

€ Maximize:
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Genetic Algorithm

Chromosomes encode mappings and priorities.
Tournament selection.

Uniform mutation.

2-point crossover.

Elitism model.
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Experimental Results: Cores

20 tasks per core, 20 task graphs per each pair.

Lifetime improvement Computational time

2 cores & 40 tasks — 51 times — & seconds.
4 cores & 80 tasks— 39 times — 34 seconds.
8 cores & 160 tasks — 28 times — 4 minutes.
16 cores & 320 tasks — 8 times — 36 minutes.

32 cores & 640 tasks— 4 times — 2 hours.
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Experimental Results: lasks

Quad-core chip, 20 task graphs per each pair.

Lifetime improvement Computational time

4 cores & 40 tasks — 61 times — 8 seconds.
4 cores & 80 tasks— 30 times — 32 seconds.
4 cores & 160 tasks — 29 times — 2 minutes.
4 cores & 320 tasks — 7 times — 7 minutes.

4 cores & 640 tasks— 4 times — 12 minutes.
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Experimental Results: lechniques

¢

Comparison with the state of the art.
We are here HotSpot SSA

\ \ /

4 /40 — 61 times — 1 times — 25 times.
4 /80 — 36 times — 2 times — 14 times.
4 /160 — 29 times — 2 times — 5 times.
4 /320 — 7 times — 2 times — 4 times.
4 /640 — 4 times — 1 times — 2 times.
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EXperimental Results: Energy

Multi-objective optimization (NSGA-II).

Do not compromise the energy efficiency

MTTF, times
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Experimental Results: RLE

Real-life example — MPEG2 decoder.
2 COres.

34 tasks.

24 t1imes longer lifetime with the proposed method.

5 times with HotSpot.
11 times with the SSA.
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Cnacnbo! Borpoch!?
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