Statistical Analysis of Process Variation Based on Indirect Measurements

Ivan Ukhov, Mattias Villani, Petru Eles, and Zebo Peng Linköping University

January 2014

Outline

- 1. Introduction
- 2. Our goal and solution
- 3. Illustrative example
- 4. Technical details
- 5. Conclusion

DN

Wafer

Wafer

Longer

Shorter

Our Goal

Quantity of interest

_		

 \mathcal{U}

$\tilde{q} = h(u)$

$\tilde{q} = h(u)$

\rightarrow \longrightarrow U

$\longrightarrow U$

$Q \longrightarrow$ Indirect Incomplete

$\longrightarrow U$

$\longrightarrow U$

----> U

Primary

----> U

Primary Comprehensive

$\rightarrow U$

Primary Comprehensive Efficient

 \mathcal{U} Effective channel length QTemperature

u Effective channel length Q Temperature

Workload

Temperature

True

True

Inferred

Decision Making

Decision Making

*

Decision Making

*

Decision Making $P(u < u_*)$

p(A|B) = ?

$p(A|B) \propto p(B|A) \times p(A)$

Posterior Likelihood Prior $p(A|B) \propto p(B|A) \times p(A)$

Posterior Likelihood Prior $p(u|Q) \propto p(Q|u) \times p(u)$

$\frac{\text{Prior}}{p(u)}$

Prior

$u \sim \mathcal{GP}(\mu, k)$

Prior p(u) $u \sim \mathcal{GP}(\mu, k)$

Likelihood $p(\mathcal{Q}|u)$

Likelihood

 $p(\mathcal{Q}|u)$

q = f(u)

Posterior $p(u|Q) \propto p(Q|u) \times p(u)$

Monte Carlo

Markov chain Monte Carlo

Conclusion

$\rightarrow U$

Primary Comprehensive Efficient

Thank you! Questions?

Hampus Cullin / Wikimedia Commons / CC-BY-SA-3.0

Prior

 $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ $\mu_u \sim \mathcal{N}(\mu_0, \sigma_0^2)$ $\sigma_u^2 \sim \text{Scale-inv-}\chi^2(\nu_u, \tau_u^2)$

2()

Correlations

 $u \sim \mathcal{GP}(\mu, k)$

 $k(r, r') = \sigma_{u}^{2}(\eta k_{\rm SE}(r, r') + (1 - \eta) k_{\rm OU}(r, r'))$

 $k_{\rm OU}(r,r') = \exp\left(-\frac{\|r\| - \|r'\|}{\ell_{\rm OU}}\right)$ $k_{\rm SE}(r,r') = \exp\left(-\frac{\|r-r'\|^2}{\ell_{\rm SE}^2}\right)$

Likelihood

$p(\mathcal{Q}|u) = p(\{q_i^{\mathrm{msr}}\}|\boldsymbol{\theta})$

$q = f(u) \quad \mathbf{q}^{\mathrm{msr}} = \mathbf{q} + \boldsymbol{\epsilon}$

$\mathbf{q}^{\mathrm{msr}} | \boldsymbol{\theta} \sim \mathcal{N}(\mathbf{q}, \sigma_{\epsilon}^2 \mathbf{I})$

Posterior

$p(u|\mathcal{Q}) = p(\theta | \{q_i^{\text{msr}}\})$

Metropolis-Hastings

 $\boldsymbol{\theta} \sim t_{\nu} \left(\hat{\boldsymbol{\theta}}, \alpha^2 \mathbf{J}^{-1} \right)$