System-Level Analysis and Design under Uncertainty

Ivan Ukhov

December 15, 2017

Introduction

Electronic Systems

- Omniscient
- Omnipresent

Analysis and Design

- Challenging
- Consequential

Uncertainty

- Lack of knowledge
- Inherent randomness

Fabrication

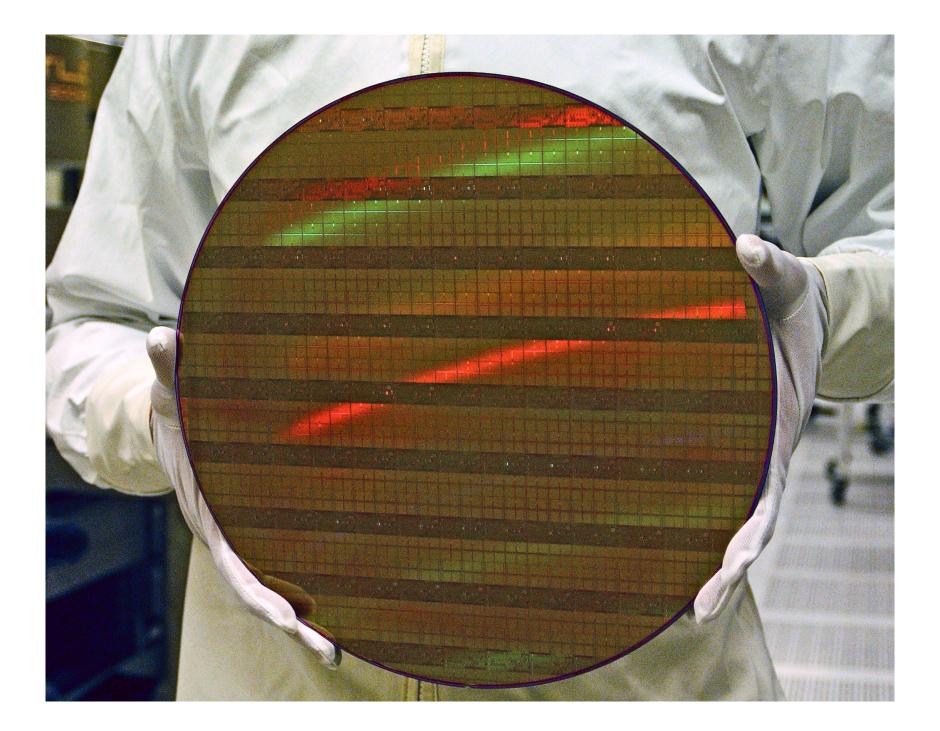
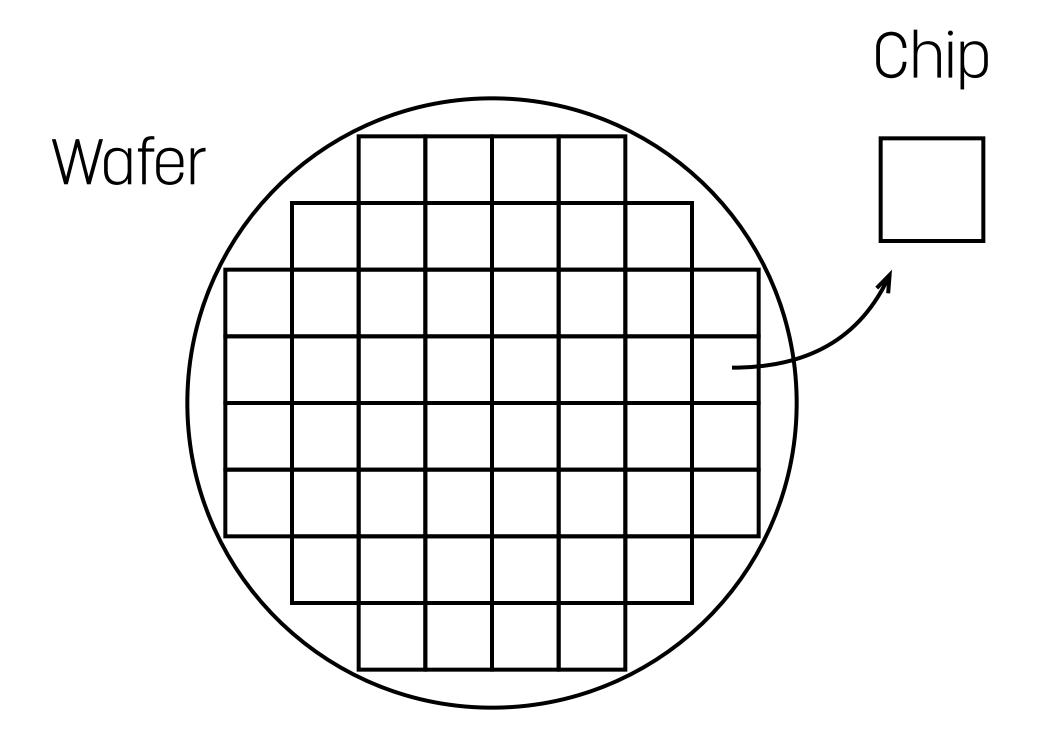


Photo: Intel, https://goo.gl/mHMxe1

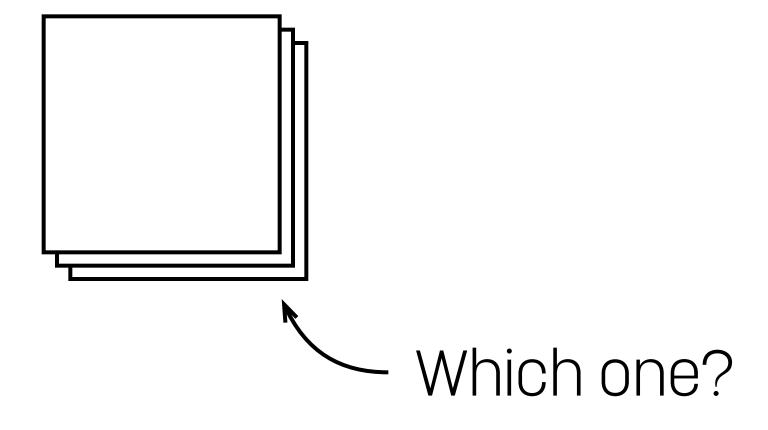
Fabrication

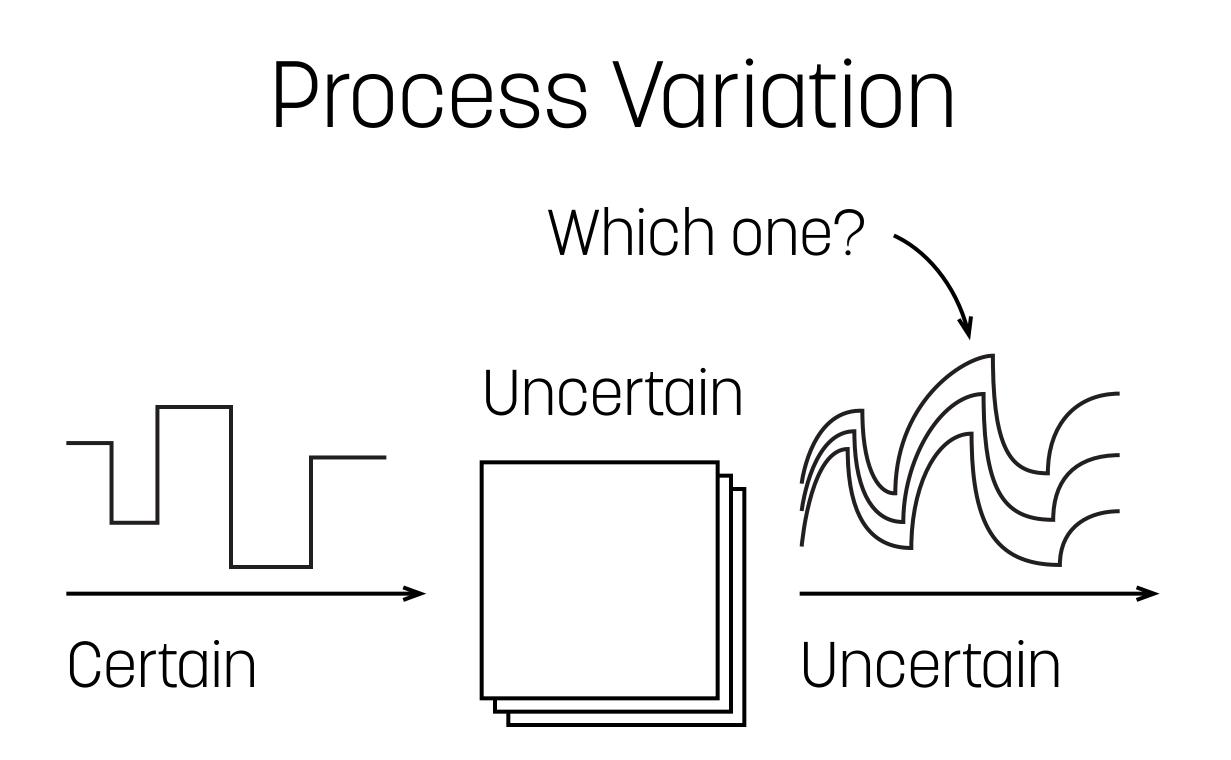


No Variation Certain Certain Certain

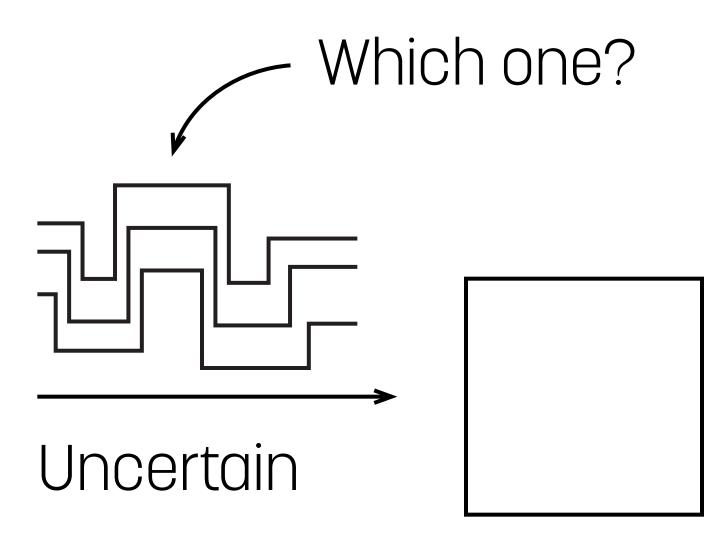
Process Variation

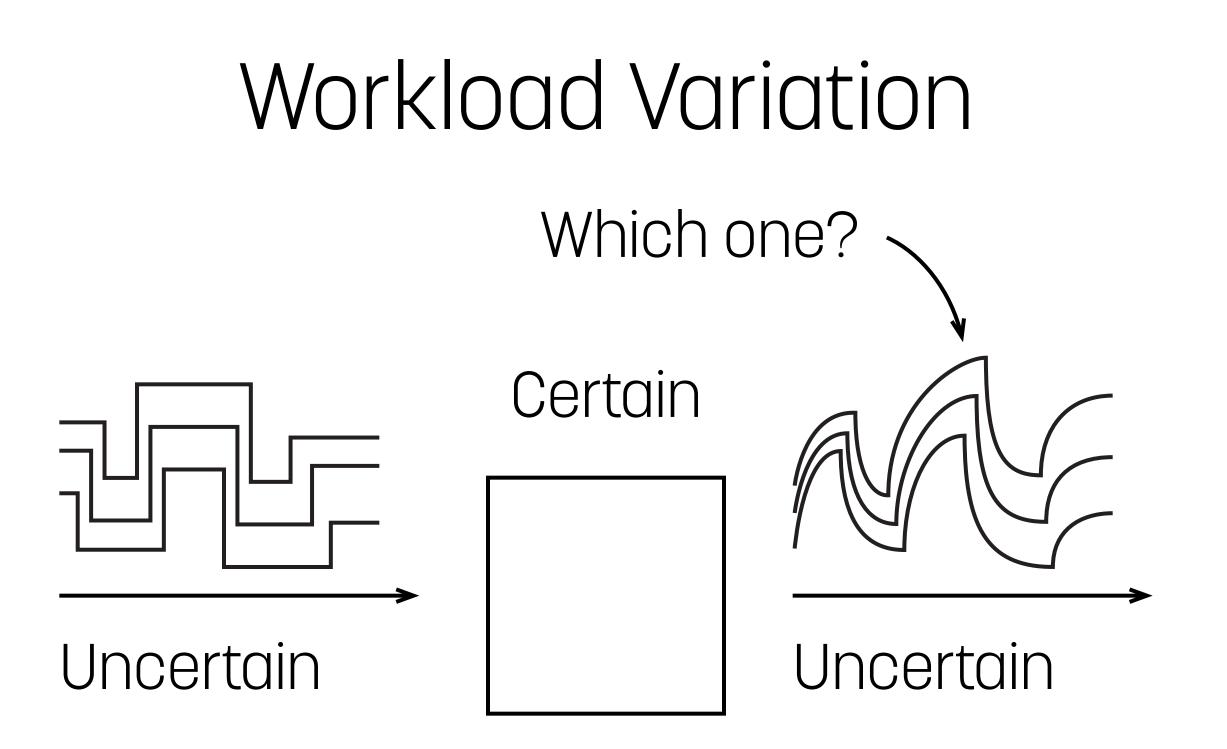
Uncertain

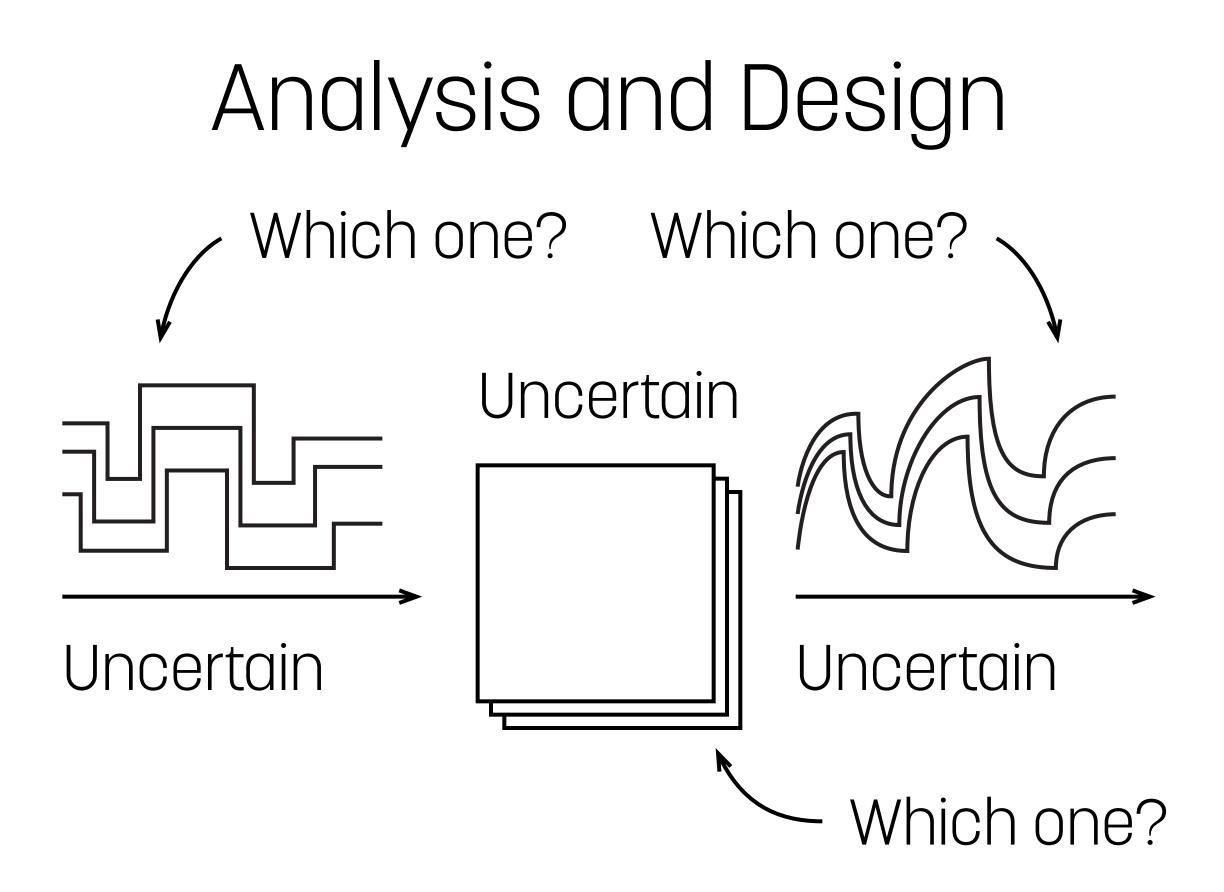




Workload Variation







Motivation

- Uncertainty
 - Inevitable
 - Deleterious

Objective

 Provide the designer with effective and efficient techniques for analysis and design under uncertainty

Outline

- 1. Analysis and Design with Certainty
- 2. Characterization of Process Variation
- 3. Analysis and Design under Process Variation
- 4. Analysis under Workload Variation
- 5. Resource Management under Workload Variation

Analysis and Design with Certainty

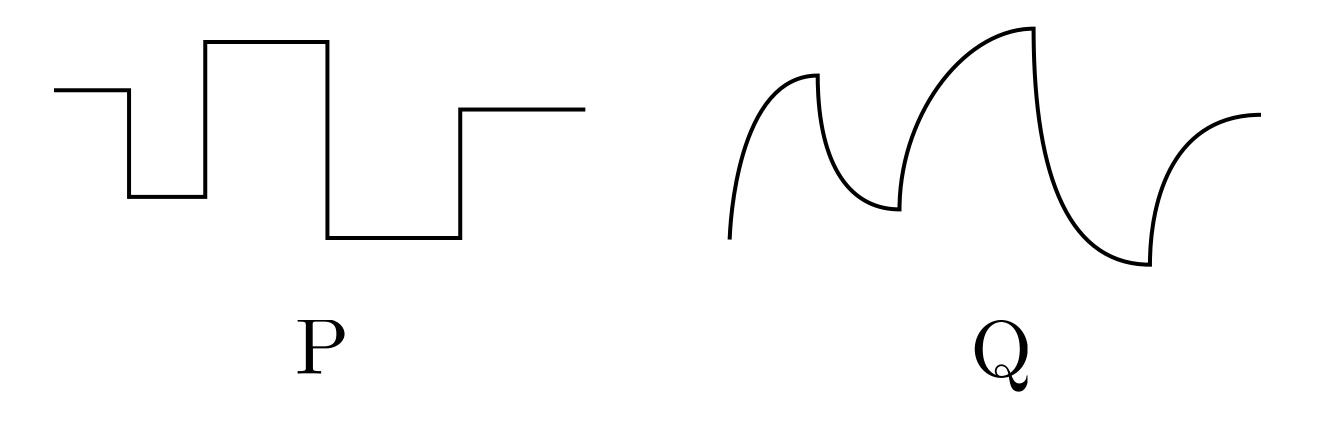
Power and Temperature

- Highly important
 - Energy efficiency
 - Reliability

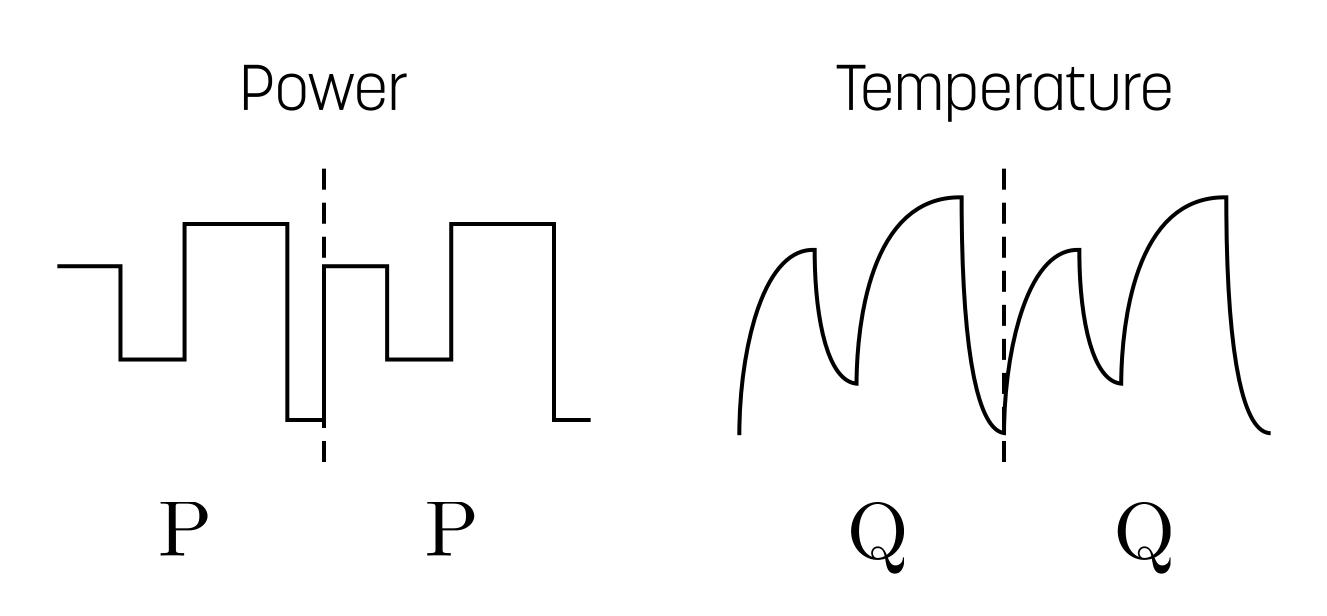
Temperature Analysis

- Transient state
- Dynamic steady state

Transient State



Dynamic Steady State



21

Problem Formulation

- \circ $\,$ Given a periodic power profile P
- \circ $% \left(\mathcal{C}_{1}\right) =0$ Compute the corresponding dynamic steady-state temperature profile Q

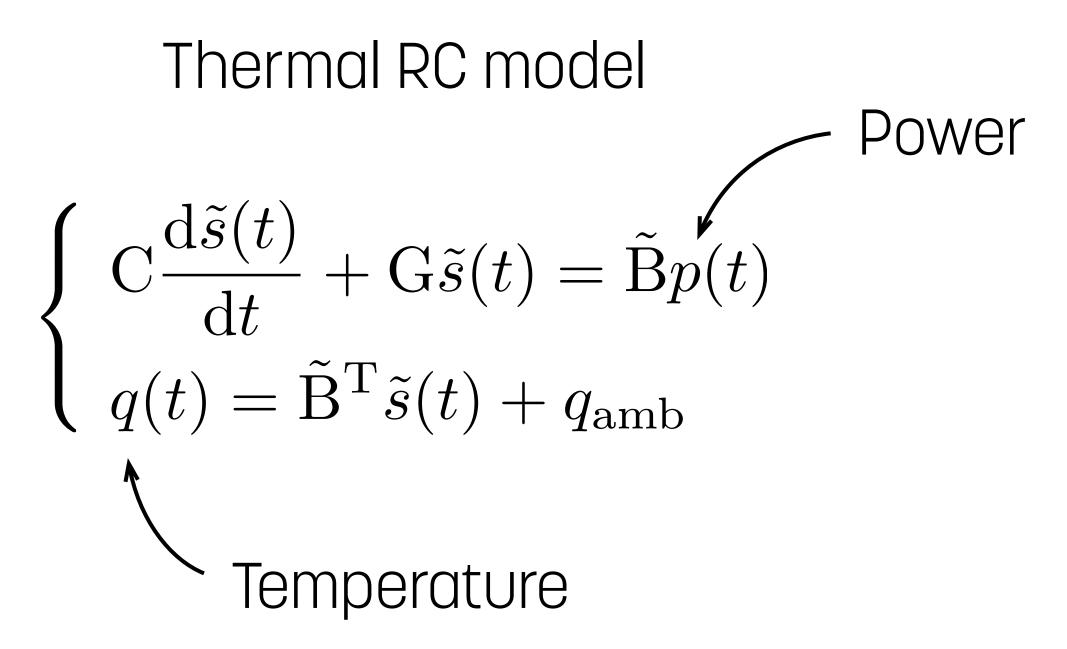
Previous Work

- Slow
- Inaccurate

Proposed Solution

- Fast
- Exact

Solution Overview



Solution Overview

Auxiliary transformation

$$s(t) = C^{\frac{1}{2}}\tilde{s}(t)$$

$$A = -C^{-\frac{1}{2}}GC^{-\frac{1}{2}}$$

$$B = C^{-\frac{1}{2}}\tilde{B}$$

$$\frac{ds(t)}{dt} = As(t) + Bp(t)$$

$$q(t) = B^{T}s(t) + q_{amb}$$

Solution Overview

Dynamic steady state $s_0 = s_{n_s}$

$$w_{0} = 0$$

$$w_{i} = Ew_{i-1} + Fp_{i}$$

$$s_{0} = U(I - e^{\Lambda \tau})^{-1}U^{T}w_{n_{s}}$$

$$s_{i} = Es_{i-1} + Fp_{i}$$

Experimental Results

- Considered diverse scenarios
- Shown high computational speed
 - 9–170 times faster than analytical iterative transient analysis
 - 2000–5000 times faster than iterative analysis with HotSpot

Thermal Cycling

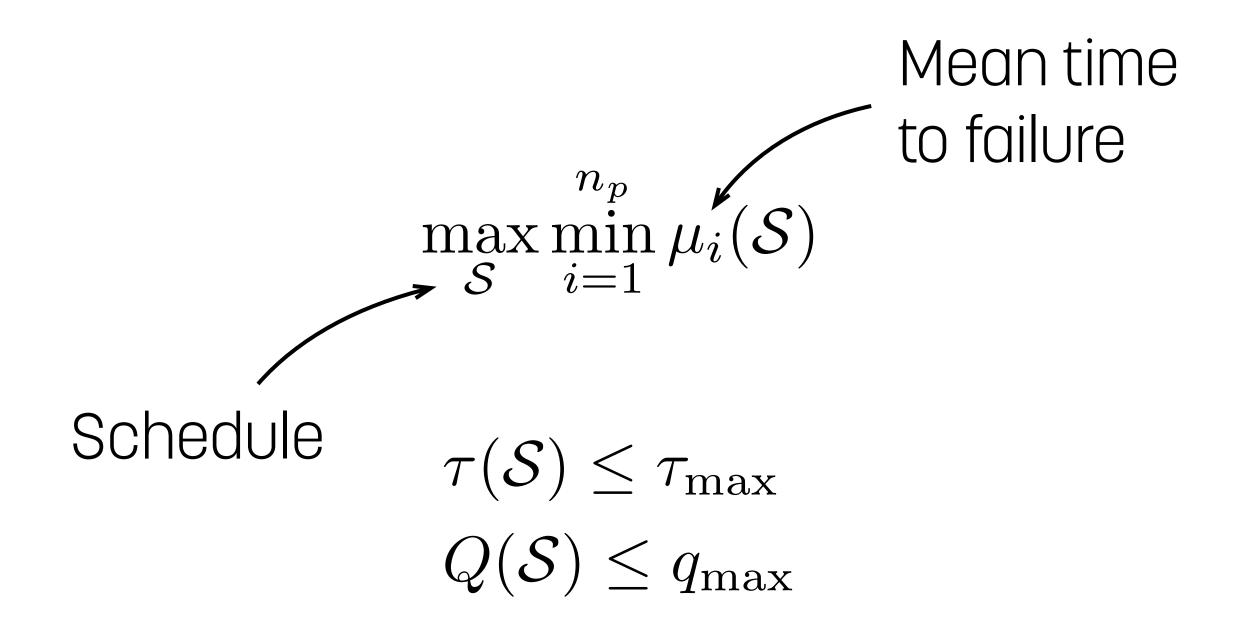
More damage

Less damage

Reliability Optimization

- Vary the application's schedule
- Maximize the system's lifetime
- Satisfy a number of constraints

Reliability Optimization

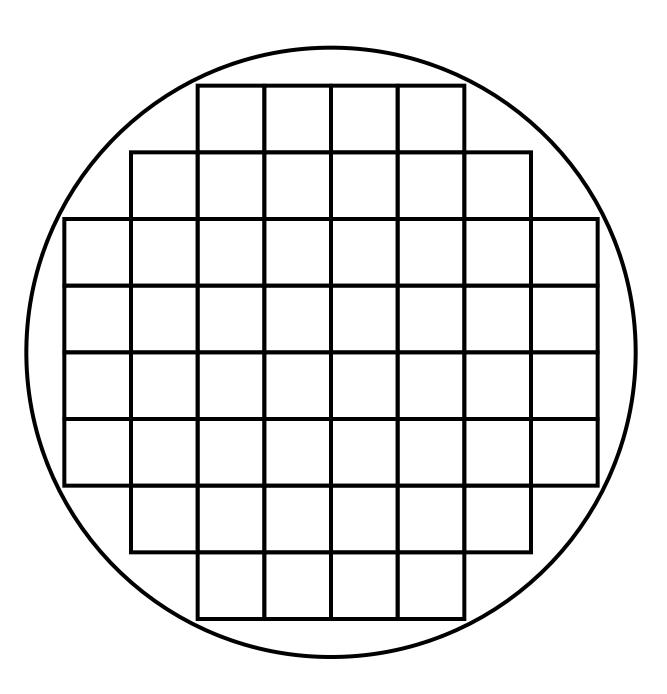


Experimental Results

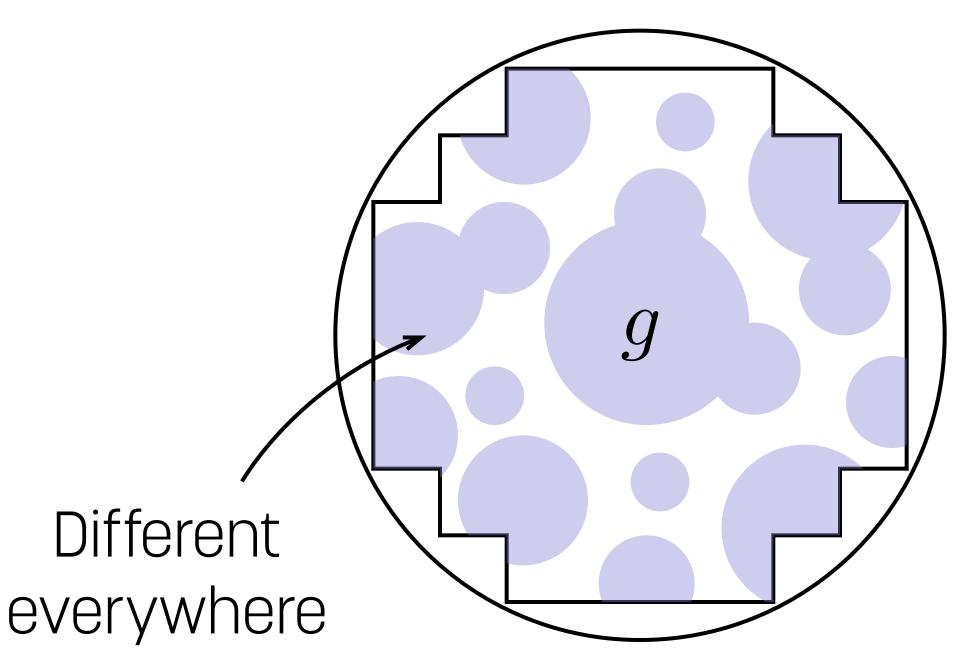
- Applied to a large set of synthetic problems and to a real-life problem
- Increased the mean time to failure by a factor of 10–70
- Maintained energy efficiency

Characterization of Process Variation

Fabrication



Quantity of Interest



Problem Formulation

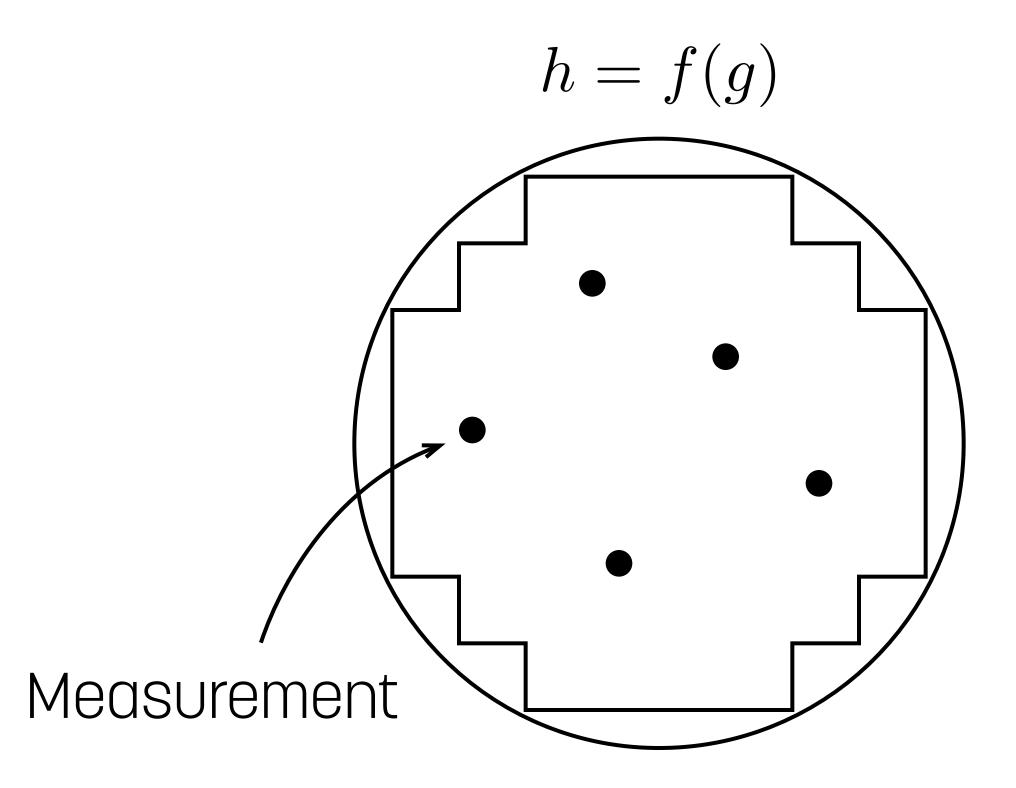
- Given the knowledge of the technological process at hand
- $\circ~$ Quantify the process parameter g at all locations on the wafer

Previous Work

- Intrusive
- Secondary parameters

Proposed Solution

- Non-intrusive
- Primary parameters



$$\begin{array}{ll} g|u\sim \text{Gaussian Process}(\mu,v)\\ \epsilon|u\sim \text{Gaussian } \left(0,\sigma_{\epsilon}^{2}\right)\\ \text{Noise} & \text{Bayes' theorem}\\ p(u|H)\propto p(H|u)p(u) \end{array}$$

40

Metropolis-Hastings algorithm $u \sim t_{n_u} \left(u^*, \alpha^2 \mathbf{J}^{-1} \right)$

Posterior optimization $u^* = \arg \max_u p(u|H)$

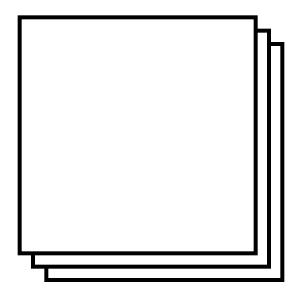
Experimental Results

- Inferred the effective channel length from temperature measurements
- Considered diverse configurations
- Shown high accuracy and speed
 - Less than 5% of error
 - Less than 20 minutes

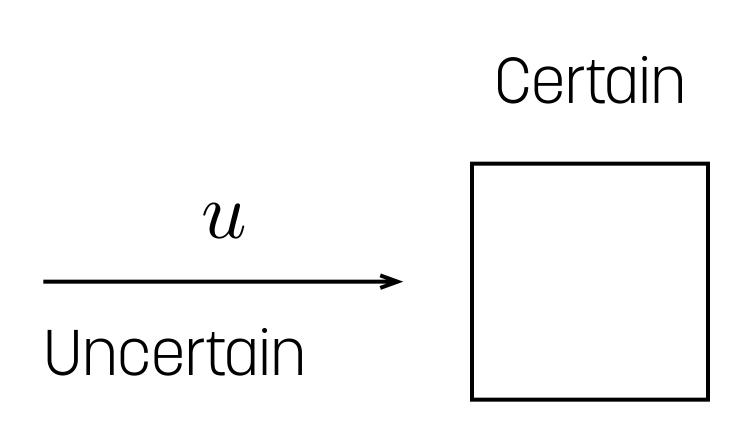
Analysis and Design under Process Variation

Process Variation

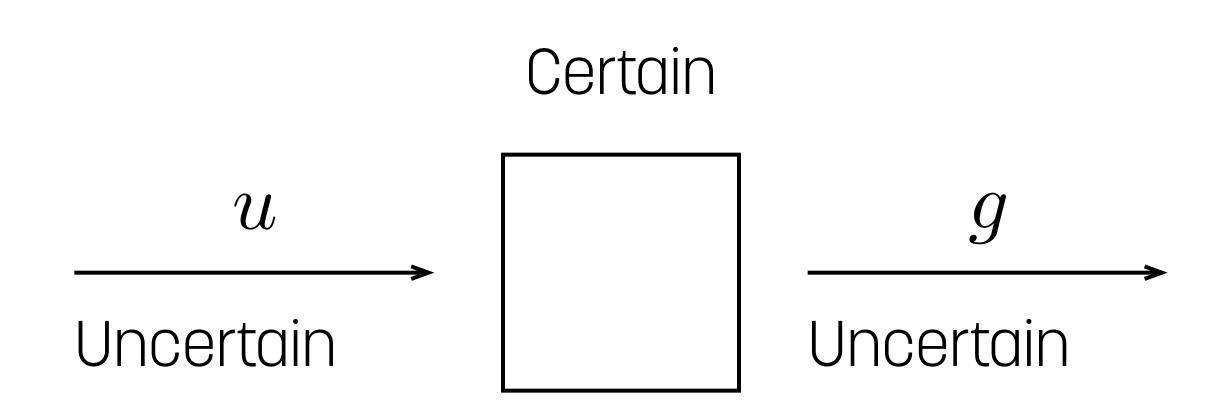
Uncertain



Uncertain Parameters



Quantity of Interest



Problem Formulation

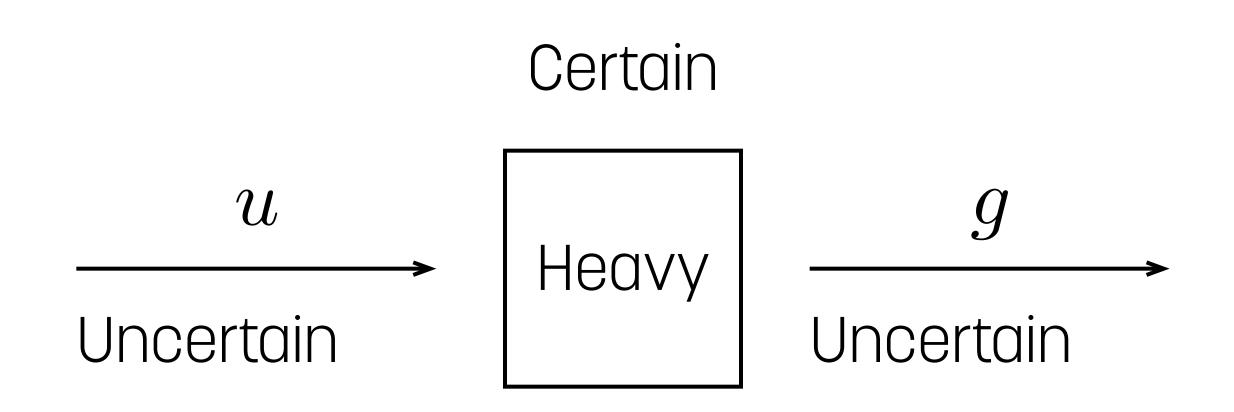
- $\circ~$ Given the probability distribution of the uncertain parameters u
- \circ % f(x) = 0 Compute the probability distribution of the quantity of interest g

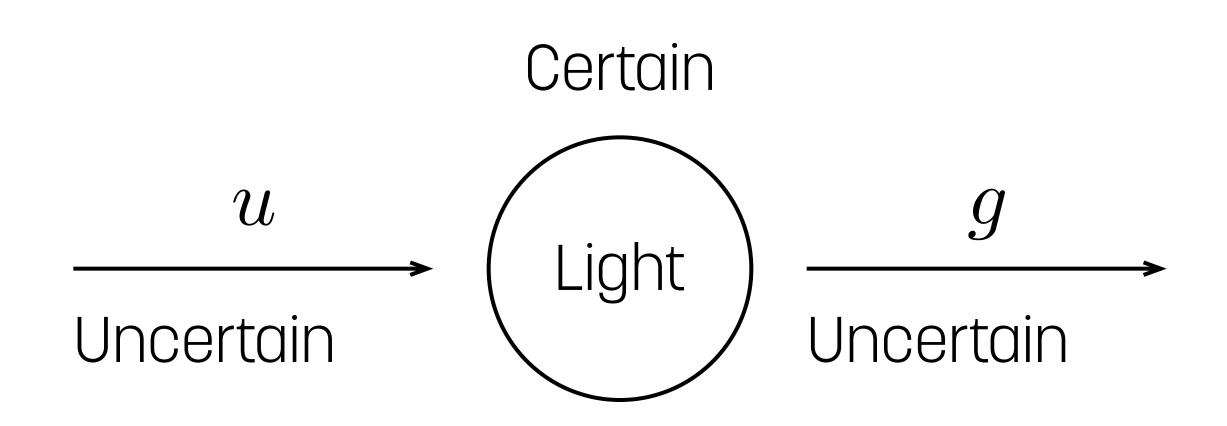
Previous Work

- Limited to specific quantities
- Unrealistic assumptions

Proposed Solution

- General
- Efficient
- Easy to apply





$$u = \mathbb{T}(z)$$

 $u: \Omega \to \mathbb{R}^{n_u}$ Many dependent $z: \Omega \to \mathbb{R}^{n_z}$ A few independent

$$g(u) = (g \circ \mathbb{T})(z) = g(\mathbb{T}(z))$$

Polynomial chaos

$$g \approx \mathcal{C}_{l_c}^{n_z}(g) = \sum_{i \in \mathcal{I}_{l_c}^{n_z}} \hat{g}_i \psi_i$$
 Polynomial

Spectral projection

$$\hat{g}_{i} \approx \mathcal{Q}_{l_{q}}^{n_{z}}(g\psi_{i}) = \sum_{j \in \mathcal{J}_{l_{q}}^{n_{z}}} (g \circ \mathbb{T})(z_{j})\psi_{i}(z_{j})w_{j}$$

$$\bigwedge \text{Coefficient}$$

Temperature Analysis

- Account for process variation
 - Transient state
 - Dynamic steady state

Experimental Results

- Compared with extensive simulations
- Shown high accuracy and speed
 - Less than 2% of error
 - 3–5 orders of magnitude faster than direct sampling

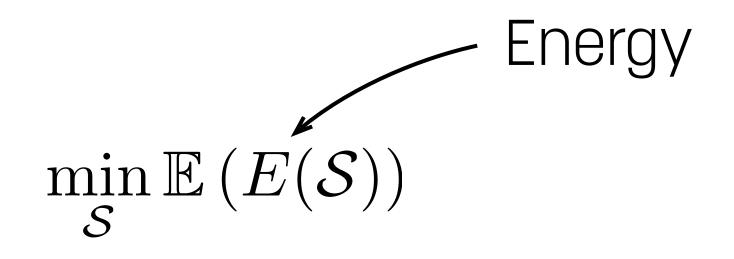
Reliability Analysis

• Account for process variation

Energy Optimization

- Vary the application's schedule
- Minimize the system's energy
- Satisfy a number of constraints

Energy Optimization



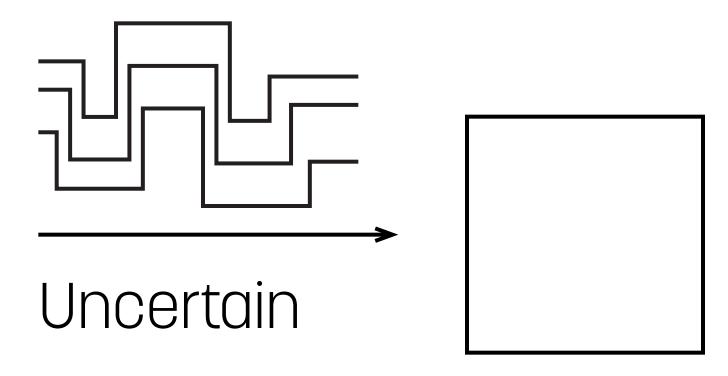
$$\begin{split} \tau(\mathcal{S}) &\leq \tau_{\max} \\ \mathbb{P}\left(Q(\mathcal{S}) \geq q_{\max}\right) \leq \rho_{\mathrm{burn}} \\ \mathbb{P}\left(\mathbb{E}\left(L(\mathcal{S})\right) \leq L_{\min}\right) \leq \rho_{\mathrm{wear}} \\ \end{split}$$

Experimental Results

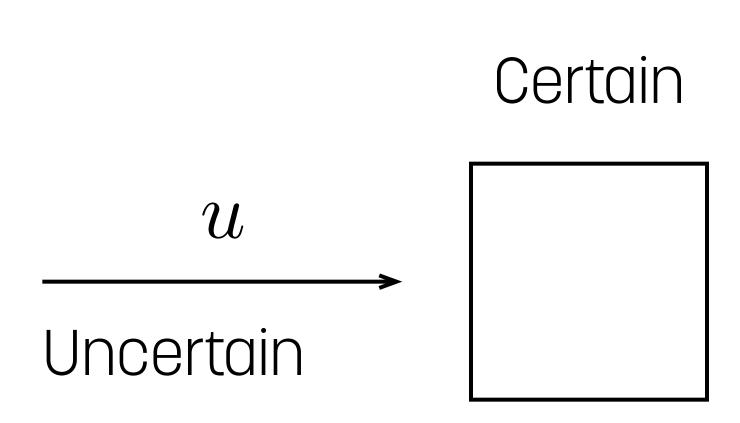
- Demonstrated the importance of accounting for process variation
 - Up to 100% of solutions that ignore uncertainty might be unacceptable

Analysis under Workload Variation

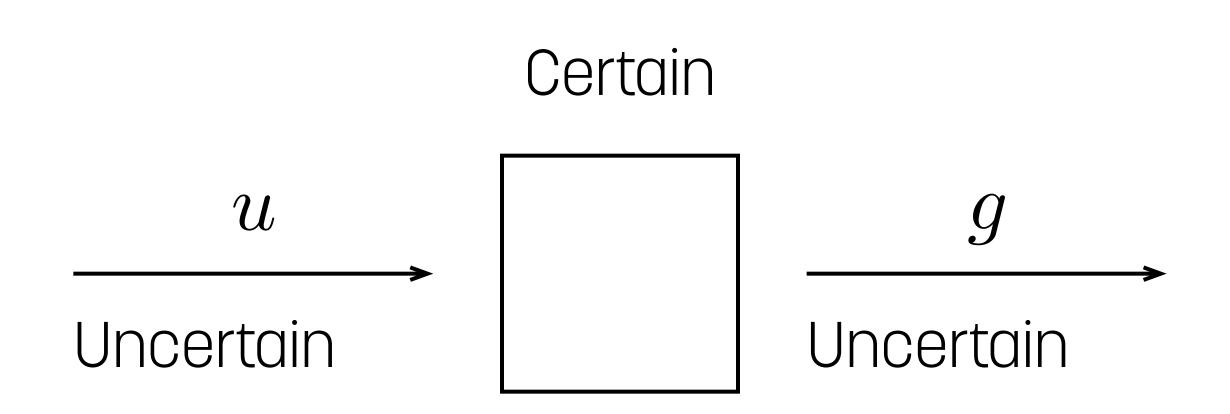
Workload Variation



Uncertain Parameters



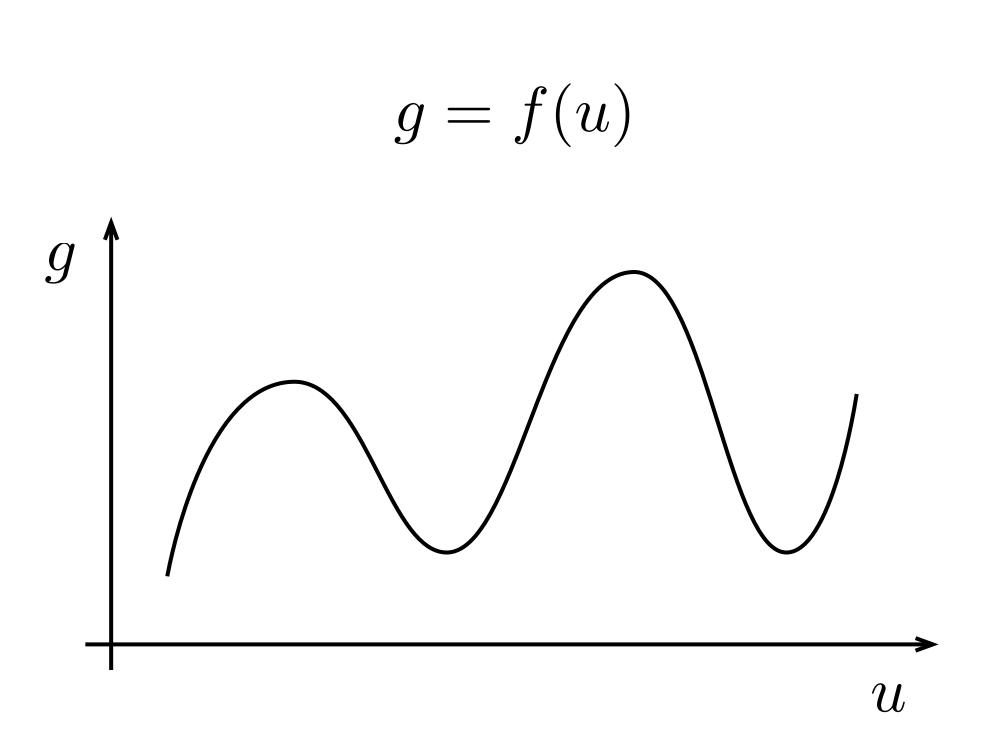
Quantity of Interest



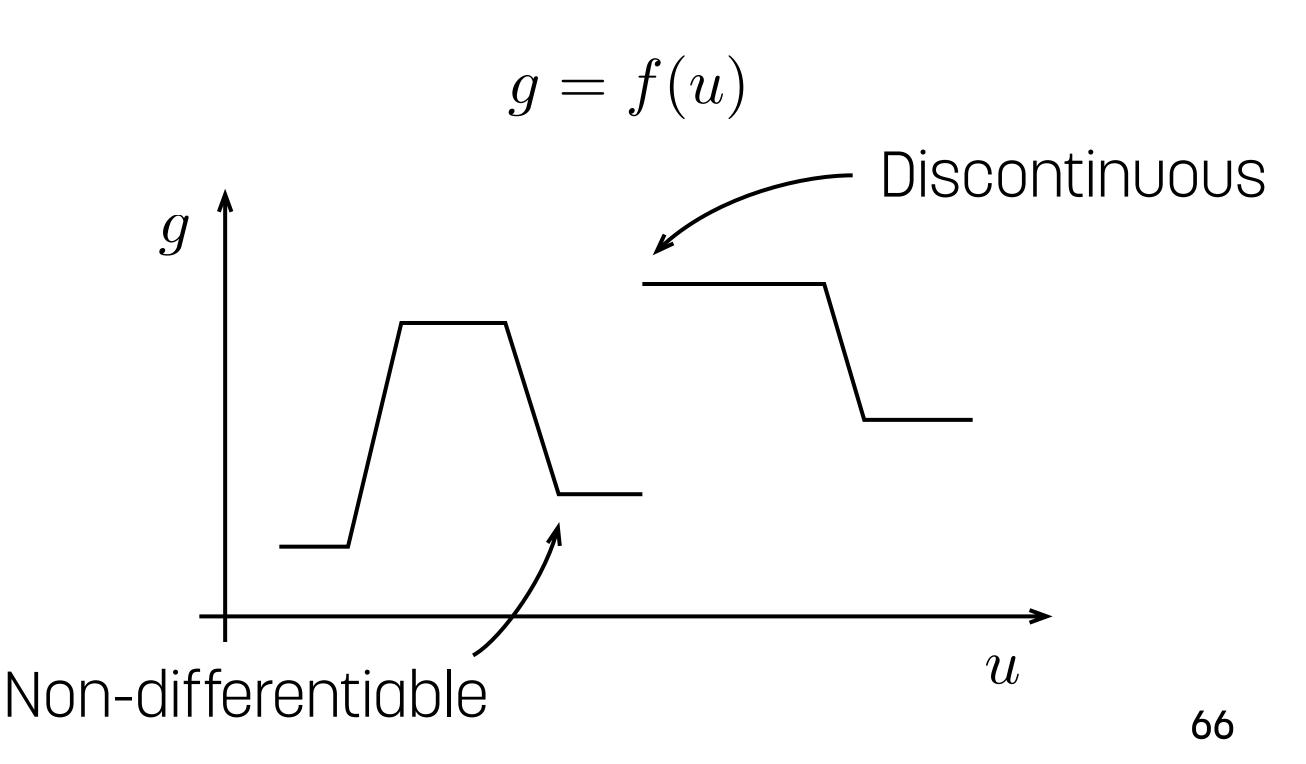
Problem Formulation

- \circ $\,$ Given the probability distribution of the uncertain parameters u
- \circ % f(x) = 0 Compute the probability distribution of the quantity of interest g

Response Surface



Response Surface



Response Surface

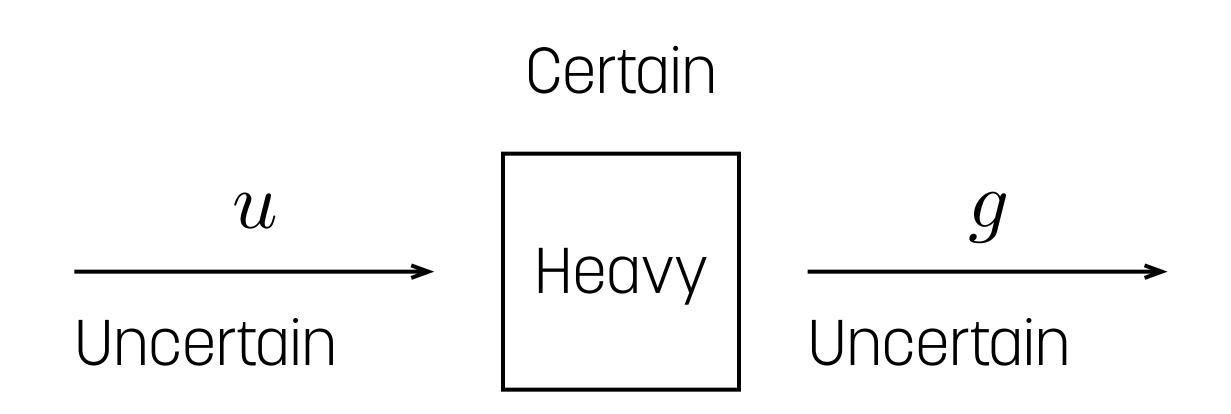
- Process variation
 - Smooth, well-behaved
- Workload variation
 - Non-smooth, ill-behaved

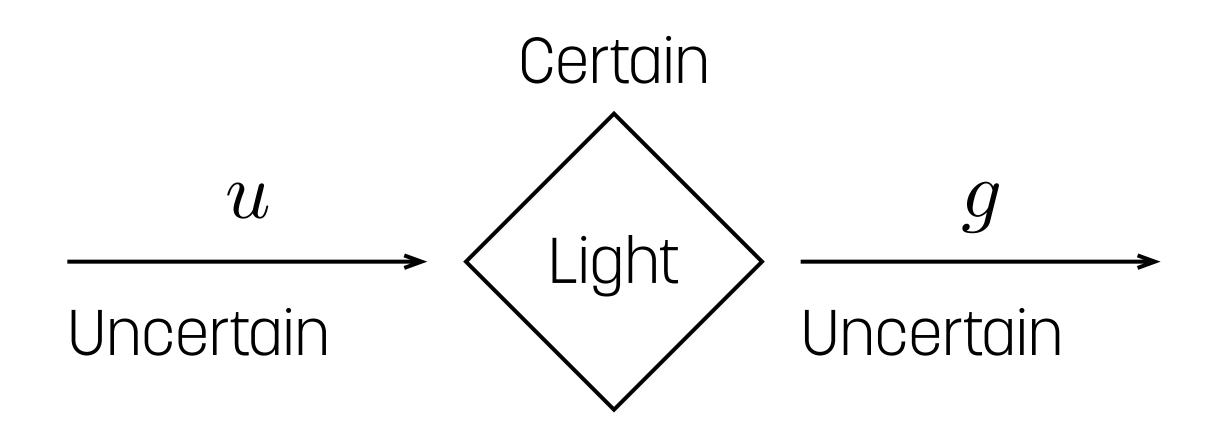
Previous Work

- Inadequate
- Limited in use

Proposed Solution

- General
- Efficient
- Easy to apply





$$u = \mathbb{T}(z)$$

$$u: \Omega \to \mathbb{R}^{n_u}$$
$$z: \Omega \to [0, 1]^{n_z}$$

$$g(u) = (g \circ \mathbb{T})(z) = g(\mathbb{T}(z))$$

Solution Overview

Adaptive hierarchical interpolation

$$g \approx \mathcal{A}_{l_s}^{n_z}(g) = \mathcal{A}_{l_s-1}^{n_z}(g) + \Delta \mathcal{A}_{l_s}^{n_z}(g)$$

Hierarchical surplus

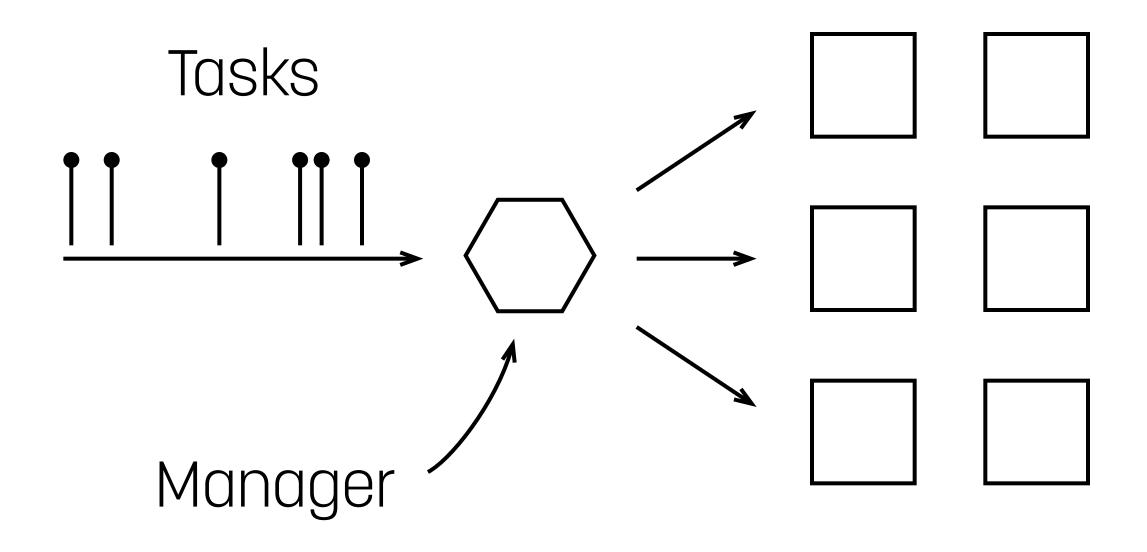
$$\Delta \mathcal{A}_{l_s}^{n_z}(g) = \sum_{i \in \Delta \mathcal{I}_{l_s}^{n_z}} \sum_{j \in \Delta \mathcal{J}_i^{n_z}} \Delta(g \circ \mathbb{T})(x_{ij}) e_{ij}$$

Experimental Results

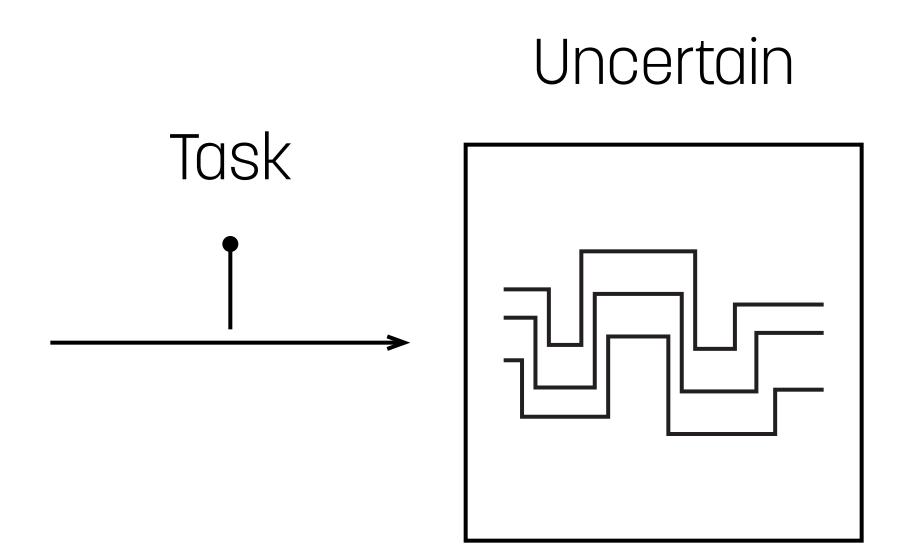
- Applied to a set of synthetic problems and to a real-life problem
- Shown computational efficiency
 - 1-2 orders of magnitude more accurate than direct sampling

Resource Management under Workload Variation

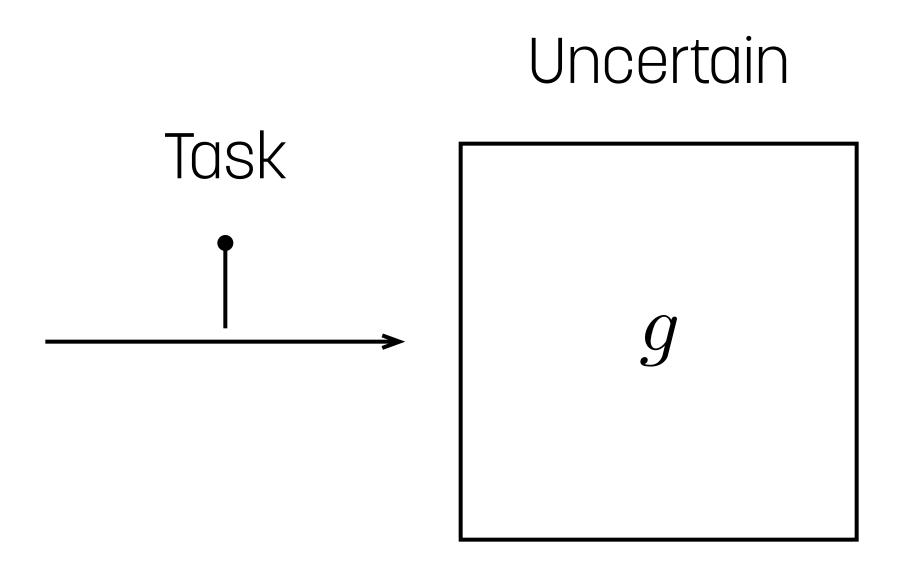
Resource Management



Resource Usage



Quantity of Interest



Problem Formulation

- \circ Given past resource-usage traces G
- Predict resource usage for individual tasks multiple steps ahead

Previous Work

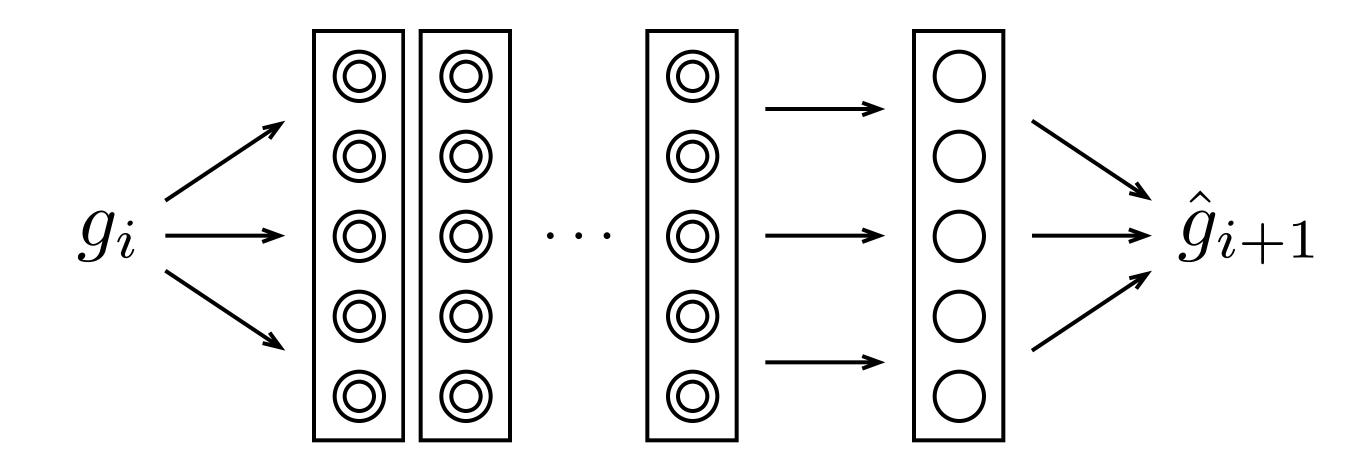
- Nonexistent
 - Only aggregate

Proposed Solution

- Fine grained
- Long range

Solution Overview

Recurrent neural network



Experimental Results

- Studied CPU usage in Google's computer cluster with 12500 nodes
- Shown the existence of a structure suitable for educated prediction
 - Error reduction of 47% for 4 steps ahead compared to random walk

Conclusion

Outline

- 1. Analysis and Design with Certainty
- 2. Characterization of Process Variation
- 3. Analysis and Design under Process Variation
- 4. Analysis under Workload Variation
- 5. Resource Management under Workload Variation

Open Source

- https://github.com/learning-on-chip
- https://github.com/markov-chain
- https://github.com/math-rocks
- https://github.com/ready-steady
- https://github.com/stainless-steel
- https://github.com/turing-complete