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Flectronic Systems

o Omniscient
o Omnipresent



Analysis and Design

o (Challenging
o Consequential



Jncertainty

o Lack of knowledge
o |Inherent randomness
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Process Variation
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Workload Variation

/ Which one”?

L=
=

Jncertain

5

11



Workload Variation
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Analysis and Design
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Motlvation

Jncertainty
o |nevitable

o Deleterious
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Qutline

Analysis and Design with Certainty

. Characterization of Process Variation

. Analysis and Design under Process Variation
. Analysis under Workload Variation
. Resource Management under Workload Variation
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Analysis and Design
with Certainty
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Power and Temperature

HIgnly Important
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-Nergy efficiency

Reliability
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o Transient state
o Dynamic steady state

19



Power Temperature
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Dynamic Steaady State

Power Temperature
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Problem Formulation

Given a periodic power profile P

Compute the corresponding dynamic
steady-state temperature profile ()
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o Slow
o |ngccurate
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o FASt

o EXQACT
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Solution Overview

Thermal RC model

/ Power
{ Cd§(t)

G3(t) = Bp(t)

q(t) = BY5(t) + qamp

Temperature
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Solution Overview
Auxiliary transformation
s(t) = C2 5(t)
A=-C2GC™2
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Solution Overview

Dynamic steady state

SO) — Sns

wo — 0
w; = bw;—1 + Fp;
so = Ul —e )1 U w,.

si = Bsi—1 + Fp;

27



EXxperimental Results

o (Considered diverse scenarios

o Shown high computational speed

o Q-1/0 times faster than analytical
iterative transient analysis

o 2000-5000 times faster than

iterative analysi

S With

0tSpot
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Thermal Cycling
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Reliability Optimization

Vary the application’s schedule
Maximize the system’s lifetime
Satisty a number of constraints

30



Reliability Optimization
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EXxperimental Results

o AP
Drop

led to a large set of synthetic

ems and to a real-life problem

o |ncreased the mean time to failure

0y a factor of 10-70

o Maintained energy efficiency
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Characterization of
Process Variation
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o (Glven the knowledge of the
technological process at hana

o Quantify the process parameter g
at all locations on the wafer
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o |ntrusive
o Secondary parameters
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o Non-Intrusive
o Primary parameters
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glu ~ Gaussian Process(u, v)

elu ~ Gaussian (0, 07)

4

Noise 3ayes’ theorem
p(u|H) o< p(H |u)p(u)
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Metropolis-Hastings algorithm

u~ by, (U507

Posterior optimization

u" = arg max p(u|H)
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Experimental Results

o |nferred the effective channel length
from temperature measurements

o (Considered diverse configurations
o Shown high accuracy and speed
o Less than 590 of error
o Lessthan 20 minutes
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Analysis and Design under
Process Variation
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Uncertain
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Certain

u g

Jncertain Uncertain
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Problem Formulation

Given the probability distribution of
the uncertain parameters u

Compute the probability distribution of
the quantity of interest g
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o Limited to specific quantities
o Unrealistic assumptions
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o (General
o Efficient
o Easy to apply
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Certain

u g

Jncertain Uncertain
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u = T(z)

u: Q — R"  Many dependent
2:Q —= R"  Afewindependent

g(u) = (g0 T)(2) = g(T(z))
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Solution Overview

Polynomial chaos

Polynomidal
Spectral projection

gi = Q17 (gvi) = ) (90 T)(z)vi(z)w;
\ Coefficient
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o Account for process variation
o Transient state

o Dynamic steady state
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EXperimental Results

Compared with extensive simulations
Shown Nigh accuracy and speed
o Less than 29 of error

o 3-5 orders of magnitude faster
than direct sampling
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o Account for process variation
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Energy Optimization

Vary the application’s schedule
Minimize the system’s energy
Satisfy a numbper of constraints
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min E (E(S))
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EXperimental Results

Jemo

accounting for process ve

o Up to 10090 of solutions that ignor

uncertainty might be unacceptab

nstrated the importc

A

ce of

l’

ation

50



Analysis under
Workload Variation
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Workload Variation
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Jncertain Parameters
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Quantity of Interest

Certain

u g
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Problem Formulation

Given the probability distribution of
the uncertain parameters u

Compute the probability distribution of
the quantity of interest g
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Response Surface

g = f(u)

S\
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Response Surface
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Response Surface

Process variation

o Smooth, well-behaved
Workload variation

o Non-smooth, ill-behavea
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Previous Work

Inadequate
Limited In Use
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Proposed Solution

o (Generaql

O

O

-fficient

-ASyY to apply
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Solution Overview
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Solution Overview
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Solution Overview
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Solution Overview

Adaptive hierarchical interpolation
g A7 (g) = A7 1(9) + AA = (g)

Hierarchical surplus

AA”Z Z Z A(goT)(xij)ei;

zEAIl jEAjnz
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EXperimental Results

Applied to a set of synthetic problems
and to a real-life problem

Shown computational efficiency

o 1-2 orders of magnitude more
accurate than direct sampling
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Resource Management under
Workloaa Variation
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Resource Management
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Resource Usage
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Quantity of Interest
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Task
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o Given past resource-usage traces G

O

Problem Formulation

Dredict reso

tasks multip

Jrce usage for individual

e steps anhead
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Previous Work

Nonexistent
o Only aggregate
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Proposed Solution

Fine grained
Long range
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Solution Overview

Recurrent neural network
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EXperimental Results

Studied CPU usage in Google’s
computer cluster with 12500 nodes

Shown the exi|

stence of g structure

sultable for educated prediction

o Error reduction of 4790 for 4 steps

anead compared to random walk
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conclusion
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Qutline

Analysis and Design with Certainty

. Characterization of Process Variation

. Analysis and Design under Process Variation
. Analysis under Workload Variation
. Resource Management under Workload Variation
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Open Source

https://github.com/learning-on-chip
https://github.com/markov-chain
https://github.com/math-rocks
https://github.com/ready-steady
https://github.com/stainless-steel
https://github.com/turing-complete
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